Cone oracles (qics.cones)

This module contains classes representing conic sets which users use to define the Cartesian product of cones \(\mathcal{K}\) the conic program is defined over. These classes contain feasibility, gradient, Hessian product, inverse Hessian product, and third order derivative oracles which are required by the interior-point algorithm. Symmetric cones contain additional oracles for computing the Nesterov-Todd scalings and other related functions.

Symmetric cones

NonNegOrthant(n)

Nonnegative orthant

PosSemidefinite(n[, iscomplex])

Positive semidefinite cone

SecondOrder(n)

Second order cone

Classical entropy cones

ClassEntr(n)

Classical entropy cone

ClassRelEntr(n)

Classical relative entropy cone

Quantum entropy cones

QuantEntr(n[, iscomplex])

Quantum entropy cone

QuantRelEntr(n[, iscomplex])

Quantum relative entropy cone

QuantCondEntr(sys, dims[, iscomplex])

Quantum conditional entropy cone

QuantKeyDist(G_info, K_info[, iscomplex])

Quantum key distribution cone

Operator perspective cones

OpPerspecTr(n, func[, iscomplex])

Trace operator perspective cone

OpPerspecEpi(n, func[, iscomplex])

Operator perspective epigraph

Renyi entropy cones

RenyiEntr(n, alpha[, iscomplex])

Renyi entropy cone

SandRenyiEntr(n, alpha[, iscomplex])

Sandwiched Renyi entropy cone

QuasiEntr(n, alpha[, iscomplex])

Quasi-relative entropy cone

SandQuasiEntr(n, alpha[, iscomplex])

Sandwiched quasi-relative entropy cone