Quantum key distribution

Quantum key distribution is an important application in quantum cryptography, in which a private key is securely generated and communicated between two parties using a quantum protocol. The quantum key rate is a quantity which characterizes the security of a given quantum protocol.

The quantum key rate can be computed using using the following quantum relative entropy program from [1,2]

\[ \begin{align}\begin{aligned}\min_{X\in\mathbb{H}^n} &&& S(\mathcal{G}(X) \| \mathcal{Z}(\mathcal{G}(X)))\\\text{s.t.} &&& \langle A_i, X \rangle = b_i, \quad \forall i,\ldots,p\\&&& X \succeq 0,\end{aligned}\end{align} \]

where \(\mathcal{G}:\mathbb{H}^n\rightarrow\mathbb{H}^{mr}\) is a positive linear map related to the quantum protocol, and is usually described using Kraus operators \(K_i\in\mathbb{C}^{mr\times n}\)

\[\mathcal{G}(X) = \sum_{i=1}^l K_i X K_i^\dagger,\]

and \(\mathcal{Z}:\mathbb{H}^{mr}\rightarrow\mathbb{H}^{mr}\) is the pinching map which zeros off-diagonal blocks of a block matrix

\[\mathcal{Z}(X) = \sum_{i=1}^r (| i \rangle \langle i | \otimes \mathbb{I}_m) X (| i \rangle \langle i | \otimes \mathbb{I}_m).\]

QICS provides the cone qics.cones.QuantKeyDist to represent this slice of the quantum relative entropy.

Note

We provide several ways to define the linear maps \(\mathcal{G}\) and \(\mathcal{Z}\) when initializing a qics.cones.QuantKeyDist. See the API documentation for further details.

Entanglement based BB84

As a concrete example, we consider the entanglement based BB84 protocol described in [3] where only the Z basis is used to measure the key. In this case, we have \(\mathcal{G}(X) = X\), dimensions \(n=m=r=2\), and we have the three linear constraints defined by

\[\begin{split}A_1 &= \mathbb{I}\\ \\ A_2 &= \frac{1}{4} \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) \\ \\ A_3 &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} ,\end{split}\]

and \(b = (1, q_x, q_z)\). The closed form solution for this quantum key rate is

\[\log(2) + q_x \log(q_x) + (1 - q_x) \log(1 - q_x)\]

which we use to confirm that QICS gives the correct solution.

import numpy as np

import qics
from qics.vectorize import mat_to_vec

qx = 0.25
qz = 0.75

X0 = np.array([[0.5, 0.5], [0.5, 0.5]])
X1 = np.array([[0.5, -0.5], [-0.5, 0.5]])
Z0 = np.array([[1.0, 0.0], [0.0, 0.0]])
Z1 = np.array([[0.0, 0.0], [0.0, 1.0]])

# Model problem using primal variables (t, X)
# Define objective function
c = np.vstack((np.array([[1.0]]), np.zeros((16, 1))))

# Build linear constraints <Ai, X> = bi for all i
Ax = np.kron(X0, X1) + np.kron(X1, X0)
Az = np.kron(Z0, Z1) + np.kron(Z1, Z0)
A_mats = [np.eye(4), Ax, Az]

A = np.block([[0., mat_to_vec(Ak).T] for Ak in A_mats])
b = np.array([[1.0], [qx], [qz]])

# Input into model and solve
cones = [qics.cones.QuantKeyDist(4, 2)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

analytic_rate = np.log(2) + (qx*np.log(qx) + qz*np.log(qz))
numerical_rate = info["opt_val"]

print("Analytic key rate: ", analytic_rate)
print("Numerical key rate:", numerical_rate)
Analytic key rate:  0.130812035941137
Numerical key rate: 0.1308120333864307

Reading protocols from files

It is also fairly straightforward to solve quantum key rates from .mat files from, e.g., here or here. We supply some sample code for how to do this below.

read_qkd_file.py
import numpy as np
import scipy as sp

import qics

# Read file
data   = sp.io.loadmat('filename.mat')
gamma  = data['gamma']
Gamma  = list(data['Gamma'].ravel())
K_list = list(data['Klist'].ravel())
Z_list = list(data['Zlist'].ravel())

iscomplex = np.iscomplexobj(Gamma) or np.iscomplexobj(K_list)
dtype = np.complex128 if iscomplex else np.float64

no, ni = np.shape(K_list[0])
nc     = np.size(gamma)
vni    = qics.vectorize.vec_dim(ni, iscomplex=iscomplex)

# Define objective function
c = np.vstack((np.array([[1.]]), np.zeros((vni, 1))))

# Build linear constraints
A = np.zeros((nc, 1 + vni))
for i in range(nc):
    A[i, 1:] = qics.vectorize.mat_to_vec(Gamma[i].astype(dtype)).ravel()
b = gamma

# Input into model and solve
cones = [qics.cones.QuantKeyDist(K_list, Z_list, iscomplex=iscomplex)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

References

  1. “Reliable numerical key rates for quantum key distribution”, A. Winick, N. L ̈utkenhaus, and P. J. Coles. Quantum, vol. 2, p. 77, 2018.

  2. “Numerical approach for unstructured quantum key distribution”, P. J. Coles, E. M. Metodiev, and N. L ̈utkenhaus. Nature Communications, vol. 7, no. 1, p. 11712, 2016

  3. “Quantum key distribution rates from non-symmetric conic optimization”, L. A. González, et al. arXiv preprint arXiv:2407.00152, 2024.