qics.Model¶
- class qics.Model(c, A=None, b=None, G=None, h=None, cones=None, offset=0.0)[source]¶
A class representing an instance of the standard form primal
\[ \begin{align}\begin{aligned}\min_{x \in \mathbb{R}^n} &&& c^\top x\\\text{s.t.} &&& b - Ax = 0\\ &&& h - Gx \in \mathcal{K},\end{aligned}\end{align} \]and dual
\[ \begin{align}\begin{aligned}\max_{y \in \mathbb{R}^p, z \in \mathbb{R}^q} &&& -b^\top y - h^\top z\\\text{s.t.} &&& c + A^\top y + G^\top z = 0\\ &&& z \in \mathcal{K}_*,\end{aligned}\end{align} \]conic programs, where \(c\in\mathbb{R}^n\), \(b\in\mathbb{R}^p\), \(h\in\mathbb{R}^q\), \(A\in\mathbb{R}^{p\times n}\), \(G\in\mathbb{R}^{q\times n}\), and \(\mathcal{K}\subset\mathbb{R}^{q}\) is a convex, proper cone with dual cone \(\mathcal{K}_*\subset\mathbb{R}^{q}\).
- Parameters:
- c
ndarray
2D
float64
array of size(n, 1)
representing the linear objective \(c\).- A
ndarray
orsparray
, optional 2D
float64
array of size(p, 1)
representing linear equality constraint matrix \(A\). The default isnumpy.empty((0, n))
, i.e., there are no linear equalitiy constraints.- b
ndarray
, optional 2D
float64
array of size(p, 1)
representing linear equality constraint vector \(b\). The default isnumpy.zeros((p, 1))
, i.e., \(b=0\).- G
ndarray
orsparray
, optional 2D
float64
array of size(q, n)
representing linear cone constraint matrix \(G\). The default is-scipy.sparse.eye(n)
, i.e., cone constraints are of the simplified form \(x+h\in\mathcal{K}\).- h
ndarray
, optional 2D
float64
array of size(q, 1)
representing linear cone constraint vector \(h\). The default isnumpy.zeros((q, 1))
, i.e., \(h=0\).- cones
list
ofcones
, optional Cartesian product of cones \(\mathcal{K}\). Default is
[]
i.e., there are no conic constraints.- offset
float
, optional Constant offset term to add to the objective function. Default is
0
.
- c