qics.cones.RenyiEntr¶
- class qics.cones.RenyiEntr(n, alpha, iscomplex=False)[source]¶
A class representing the epigraph of the (homogenized) Renyi entropy, i.e., for some \(\alpha\in[0, 1)\),
\[\mathcal{RE}_{n} = \text{cl}\{ (t,u,X,Y) \in \mathbb{R} \times \mathbb{R}_{++} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq u D_\alpha(u^{-1}X \| u^{-1}Y) \},\]where
\[D_\alpha(X\|Y)=\frac{1}{\alpha-1}\log(\text{tr}[X^\alpha Y^{1-\alpha}]),\]is the \(\alpha\)-Renyi entropy.
- Parameters:
See also
QuasiEntr
Quasi-relative entropy
SandRenyiEntr
Sandwiched Renyi entropy
QuantRelEntr
Quantum relative entropy