qics.quantum.i_kr¶
- qics.quantum.i_kr(mat, dims, sys)[source]¶
Performs Kronecker product between the identity matrix and a given matrix, e.g., if we consider a bipartite setup with
dims=(n0, n1)
, this is the unique linear map satisfying\[X \mapsto \mathbb{I} \otimes X,\]if
sys=0
, or\[X \mapsto X \otimes \mathbb{I},\]if
sys=1
, for all \(X\in\mathbb{H}^n\).- Parameters:
- mat
ndarray
Array of size
(n0*n1*...*nk-1 / nx, n0*n1*...*nk-1 / nx)
to apply the Kronecker product to, wherenx
is the product of the dimensions of the subsystems specified bysys
.- dims
tuple
ofint
The dimensions
(n0, n1, ..., nk-1)
of the \(k\) subsystems which the output is defined on.- sys
int
ortuple
ofint
Which of the \(k\) subsystems to apply the Kronecker product to. Can define multiple subsystems.
- mat
- Returns:
ndarray
The resulting
(n0*n1*...*nk-1, n0*n1*...*nk-1)
matrix after performing the Kronecker product.
See also
p_tr
The partial trace operator
Notes
This is the adjoint operator of the partial trace.