Quantum information

Semidefinite programs commonly arise in quantum information as quantum states are defined using positive semidefinite matrices. We survey some of these applications below.

Quantum state discrimination

Consider a setup where a quantum state \(\rho_i\) is sent with probability \(p_i\). We want to design a set of POVMs \(\{ E_i \}_{i=1}^p\) which maximizes the probability of success of correctly identifying the quantum states. This can be done by solving the following semidefinite program.

\[ \begin{align}\begin{aligned}\min_{E_i \in \mathbb{H}^n} &&& \sum_{i=1}^p p_i \text{tr}[ E_i \rho_i ]\\\text{subj. to} &&& \sum_{i=1}^p E_i = \mathbb{I}\\&&& E_i \succeq 0, \quad \forall i=1,\ldots,p.\end{aligned}\end{align} \]

Consider the concrete example from [1] where we have states

\[\begin{split}\rho_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \rho_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.\end{split}\]

For any probabilities \(p_1\) and \(p_2=1-p_1\), it is known that the solution to the semidefinite program is \(E_1=\rho_1\) and \(E_2=\rho_2\). We can confirm this using QICS as shown below.

import numpy as np

import qics

n = 2
p1 = p2 = 0.5

eye_mtx = qics.vectorize.eye(n)
rho_1 = qics.vectorize.mat_to_vec(np.array([[1.0, 0.0], [0.0, 0.0]]))
rho_2 = qics.vectorize.mat_to_vec(np.array([[0.0, 0.0], [0.0, 1.0]]))

# Model problem using primal variables (E1, E2)
# Define objective function
c = -np.block([[p1 * rho_1], [p2 * rho_2]])

# Build linear constraint E1 + E2 = I
A = np.block([eye_mtx, eye_mtx])
b = qics.vectorize.mat_to_vec(np.eye(n), compact=True)

# Define cones to optimize over
cones = [qics.cones.PosSemidefinite(n), qics.cones.PosSemidefinite(n)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

E1_opt, E2_opt = info["s_opt"][0][0], info["s_opt"][1][0]
print("Optimal POVMs are:")
print(np.round(E1_opt, 4))
print("and:")
print(np.round(E2_opt, 4))
Optimal POVMs are:
[[1. 0.]
 [0. 0.]]
and:
[[0. 0.]
 [0. 1.]]

Quantum state fidelity

The quantum state fidelity is a measure of dissimilarity between two quantum states, and is defined by

\[F(\rho, \sigma) = \| \sqrt{\rho} \sqrt{\sigma} \|_1.\]

In [2], it was shown that the quantumn state fidelity could also be represented using the following semidefinite program

\[\begin{split}\max_{X \in \mathbb{C}^{n\times n}} \quad \frac{1}{2} \text{tr}[X + X^\dagger] \quad \text{subj. to} \quad \begin{bmatrix} \rho & X \\ X^\dagger & \sigma \end{bmatrix} \succeq 0.\end{split}\]

We show how this can be solved using QICS below, which we verify against the analytic equation.

import numpy as np
import scipy as sp

import qics
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, mat_to_vec

np.random.seed(1)

n = 2

# Generate random problem data
rho = density_matrix(n, iscomplex=True)
sig = density_matrix(n, iscomplex=True)

rho_cvec = mat_to_vec(rho, compact=True)
sig_cvec = mat_to_vec(sig, compact=True)

# Model problem using primal variable M
# Define objective function
eye_n = np.eye(n, dtype=np.complex128)
zero_n = np.zeros((n, n), dtype=np.complex128)
C = np.block([[zero_n, eye_n], [eye_n, zero_n]])
c = -0.5 * qics.vectorize.mat_to_vec(C)

# Build linear constraints M11 = rho and M22 = sig
submat_11 = lin_to_mat(lambda X: X[:n, :n], (2 * n, n), iscomplex=True)
submat_22 = lin_to_mat(lambda X: X[n:, n:], (2 * n, n), iscomplex=True)

A = np.block([[submat_11], [submat_22]])
b = np.block([[rho_cvec], [sig_cvec]])

# Define cones to optimize over
cones = [qics.cones.PosSemidefinite(2 * n, iscomplex=True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

rt_rho = sp.linalg.sqrtm(rho)
rt_sig = sp.linalg.sqrtm(sig)
analytic_fidelity = np.linalg.norm(rt_rho @ rt_sig, "nuc")
numerical_fidelity = -info["p_obj"]

print("Analytic fidelity: ", analytic_fidelity)
print("Numerical fidelity:", numerical_fidelity)
Analytic fidelity:  0.7536085481796011
Numerical fidelity: 0.7536085578284577

Diamond norm

The diamond norm is used to measure the dissimilarity between two quantum channels. Formally, it is given as

\[\| \mathcal{N} \|_\diamond = \max_{\rho_{AA}\in\mathbb{H}^{n^2}} \| \mathcal{N}\otimes\mathbb{I} (\rho_{AA}) \|_1 \quad \text{subj. to} \quad \| \rho_{AA} \|_1 \leq 1\]

If we associate the quantum channel \(\mathcal{N}\) with a Choi-Jamiolkowski representation \(J\), then in [2] it was shown that the diamond norm could be computed using the semidefinite program

\[\begin{split}\max_{\rho,\sigma,Z} \quad & \frac{1}{2} (\langle J, Z \rangle + \langle J^\dagger, Z^\dagger \rangle)\\ \text{subj. to} \quad &\begin{bmatrix}I\otimes\rho & Z \\\ Z^\dagger & I\otimes\sigma\end{bmatrix} \succeq 0\\ & \text{tr}[\rho] = \text{tr}[\sigma] = 1\\ & \rho,\sigma\succeq 0.\end{split}\]

We show how this can be computed in QICS below.

import numpy as np

import qics
from qics.quantum import i_kr
from qics.quantum.random import choi_operator
from qics.vectorize import lin_to_mat, mat_to_vec, vec_dim

np.random.seed(1)

n = 4
N = n * n
vn = vec_dim(n, iscomplex=True)
vN = vec_dim(N, iscomplex=True)
cN = vec_dim(N, iscomplex=True, compact=True)

# Generate random problem data
J1 = choi_operator(n, iscomplex=True)
J2 = choi_operator(n, iscomplex=True)
J = J1 - J2

# Model problem using primal variables (M, rho, sig)
# Define objective function
C_M = np.block([[np.zeros((N, N)), J], [J.conj().T, np.zeros((N, N))]])

c_M = -0.5 * mat_to_vec(C_M)
c_rho = np.zeros((vn, 1))
c_sig = np.zeros((vn, 1))
c = np.block([[c_M], [c_rho], [c_sig]])

# Build linear constraints
trace = lin_to_mat(lambda X: np.trace(X), (n, 1), iscomplex=True)
ikr_1 = lin_to_mat(lambda X: i_kr(X, (n, n), 0), (n, N), iscomplex=True)
submat_11 = lin_to_mat(lambda X: X[:N, :N], (2 * N, N), iscomplex=True)
submat_22 = lin_to_mat(lambda X: X[N:, N:], (2 * N, N), iscomplex=True)

A = np.block([
    [submat_11,             -ikr_1,             np.zeros((cN, vn))],  # M11 = I ⊗ rho
    [submat_22,             np.zeros((cN, vn)), -ikr_1            ],  # M22 = I ⊗ sig
    [np.zeros((1, 4 * vN)), trace,              np.zeros((1, vn)) ],  # tr[rho] = 1
    [np.zeros((1, 4 * vN)), np.zeros((1, vn)),  trace             ]   # tr[sig] = 1
])

b = np.block([[np.zeros((cN, 1))], [np.zeros((cN, 1))], [1.0], [1.0]])

# Define cones to optimize over
cones = [
    qics.cones.PosSemidefinite(2 * N, iscomplex=True),  # M ⪰ 0
    qics.cones.PosSemidefinite(n, iscomplex=True),      # rho ⪰ 0
    qics.cones.PosSemidefinite(n, iscomplex=True),      # sig ⪰ 0
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

Quantum optimal transport

The classical optimal transport is involved with minimizing a joint probability distribution represented by a matrix \(X\) over a linear function, subject to the distribution satisfying given marginal distributions. The quantum analog of this problem can be defined as follows [3]

\[\begin{split}\max_{X\in\mathbb{H}^{nm}} \quad & \langle C, X \rangle \\ \text{subj. to} \quad & \text{tr}_A(X) = \rho_B\\ & \text{tr}_B(X) = \rho_A\\ & X\succeq 0,\end{split}\]

where partial traces are used analogously to marginal distributions. We show how this problem can be solved in QICS below.

import numpy as np

import qics
from qics.quantum import p_tr
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, mat_to_vec

np.random.seed(1)

n = m = 2

# Generate random problem data
rho_A = density_matrix(n, iscomplex=True)
rho_B = density_matrix(m, iscomplex=True)

rho_A_cvec = mat_to_vec(rho_A, compact=True)
rho_B_cvec = mat_to_vec(rho_B, compact=True)

# Model problem using primal variable X
# Generate random objective function
C = np.random.randn(n * m, n * m) + np.random.randn(n * m, n * m) * 1j
c = mat_to_vec(C + C.conj().T)

# Build linear constraints tr_A(X) = rho_A and tr_B(X) = rho_B
ptr_A = lin_to_mat(lambda X: p_tr(X, (n, m), 1), (n * m, n), iscomplex=True)
ptr_B = lin_to_mat(lambda X: p_tr(X, (n, m), 0), (n * m, m), iscomplex=True)

A = np.block([[ptr_A], [ptr_B]])
b = np.block([[rho_A_cvec], [rho_B_cvec]])

# Define cones to optimize over
cones = [qics.cones.PosSemidefinite(n * m, iscomplex=True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

Detecting entanglement

A quantum state \(\rho_{ab}\), defined on the bipartite system \(\mathcal{H}_a\otimes\mathcal{H}_b\), is separable if we can express it in the form

\[\rho_{ab} = \sum_{i} p_i \rho_a^i \otimes \rho_b^i,\]

for some probability distribution \(p\) and density matrices \(\rho_a^i\) and \(\rho_b^i\). A state that is not separable is called entangled.

One way to detect if a quantum state is entangled or separable is to use the Doherty-Parrilo-Spedalieri hierarchy [4], which is a heirarchy of semidefinite representable criteria that must be satisfied by separable states. For the \(k=2\) level heirarchy, the corresponding feasibiltiy problem is (see [1])

\[\begin{split}\text{find} \quad \rho_{aB} \quad \text{subj. to} \quad & \text{tr}_{b_2}(\rho_{aB}) \\ & \rho_{aB} = \Pi_{b_1,b_2} \rho_{aB} \Pi_{b_1,b_2} \\ & \text{tr}[\rho_{aB}] = 1 \\ & \rho_{aB} \succeq 0 \\ & \mathcal{T}_{b_2}(\rho_{aB}) \succeq 0 \\ & \mathcal{T}_{b_1b_2}(\rho_{aB}) \succeq 0.\end{split}\]

where \(\mathcal{H}_B=\mathcal{H}_{b_1}\otimes\mathcal{H}_{b_2}\), \(\mathcal{T}_X\) denotes the partial transpose with respect to subsystem \(X\), and \(\Pi_{b_1,b_2}\) is the swap operator that exchanges the positions of the subsystems \(b_1\) and \(b_2\).

We show how we can solve this feasibility problem for the entangled quantum state

\[\begin{split}\rho_{ab} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}\end{split}\]

in QICS below.

import numpy as np

import qics
from qics.quantum import p_tr, partial_transpose, swap
from qics.vectorize import eye, lin_to_mat, mat_to_vec, vec_dim

n = 2
n2 = n * n
n3 = n * n * n

vn3 = vec_dim(n3)
cn2 = vec_dim(n2, compact=True)
cn3 = vec_dim(n3, compact=True)

# Define an entangled quantum state
rho = 0.5 * np.array([[1.0, 0.0, 0.0, 1.0],
                      [0.0, 0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0, 0.0],
                      [1.0, 0.0, 0.0, 1.0]])  # fmt: skip

# Model problem using primal variables (rho_aB, sigma_aB, omega_aB)
# Define objective function
c = np.zeros((3 * vn3, 1))

# Build linear constraints
trace = lin_to_mat(lambda X: np.trace(X), (n3, 1))
ptr_b2 = lin_to_mat(lambda X: p_tr(X, (n, n, n), 2), (n3, n2))
swap_b1b2 = lin_to_mat(lambda X: swap(X, (n, n, n), 1, 2), (n3, n3))
T_b2 = lin_to_mat(lambda X: partial_transpose(X, (n2, n), 1), (n3, n3))
T_b1b2 = lin_to_mat(lambda X: partial_transpose(X, (n, n2), 1), (n3, n3))

A = np.block([
    [ptr_b2,              np.zeros((cn2, vn3)), np.zeros((cn2, vn3))],  # tr_b2(rho_aB) = rho
    [swap_b1b2 - eye(n3), np.zeros((cn3, vn3)), np.zeros((cn3, vn3))],  # swap_b1b2(rho_aB) = rho_aB
    [trace,               np.zeros((1, vn3)),   np.zeros((1, vn3))  ],  # tr[rho_aB] = 1
    [T_b2,                -eye(n3),             np.zeros((cn3, vn3))],  # sigma_aB = T_b2(rho_aB)
    [T_b1b2,              np.zeros((cn3, vn3)), -eye(n3)            ]   # omega_aB = T_b1b2(rho_aB)
])

b = np.block([
    [mat_to_vec(rho, compact=True)],
    [np.zeros((cn3, 1))],
    [1.0],
    [np.zeros((cn3, 1))],
    [np.zeros((cn3, 1))]
])

# Define cones to optimize over
cones = [
    qics.cones.PosSemidefinite(n3),  # rho_aB ⪰ 0
    qics.cones.PosSemidefinite(n3),  # sigma_aB = T_b2(rho_aB) ⪰ 0
    qics.cones.PosSemidefinite(n3),  # omega_aB = T_b1b2(rho_aB) ⪰ 0
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

QICS returns a solution summary which should look like

Solution summary
        sol. status:  pinfeas                   num. iter:    8
        exit status:  solved                    solve time:   0.430
        primal obj:   0.000000000000e+00        primal feas:  4.79e-01
        dual obj:     4.165819513474e+13        dual feas:    4.81e-01

As the semidefinite program is infeasible, then \(\rho_{ab}\) must be entangled, which we know is true for this quantum state.

References

  1. Siddhu, V. and Tayur, S. “Five starter pieces: Quantum Information Science via semidefinite programs”, Tutorials in Operations Research: Emerging and Impactful Topics in Operations, pp. 59–92. 2022.

  2. J. Watrous, “Simpler semidefinite programs for completely bounded norms,” arXiv preprint arXiv:1207.5726, 2012.

  3. Cole, S. et al. (2023) “On Quantum Optimal Transport”, Mathematical Physics, Analysis and Geometry, 26(2).

  4. Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. Complete family of separability criteria. Physical Review A, 69(2), Feb 2004.