qics.cones.QuasiEntr¶
- class qics.cones.QuasiEntr(n, alpha, iscomplex=False)[source]¶
A class representing the epigraph or hypograph of the quasi-relative entropy, i.e.,
\[\mathcal{QE}_{n, \alpha} = \text{cl} \{ (t, X, Y) \in \mathbb{R} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq -\text{tr}[ X^\alpha Y^{1-\alpha} ] \},\]when \(\alpha\in[0, 1]\), and
\[\mathcal{QE}_{n, \alpha} = \text{cl} \{ (t, X, Y) \in \mathbb{R} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq \text{tr}[ X^\alpha Y^{1-\alpha} ] \},\]when \(\alpha\in[-1, 0] \cup [1, 2]\).
- Parameters:
See also
RenyiEntr
Renyi entropy
SandQuasiEntr
Sandwiched quasi-relative entropy
QuantRelEntr
Quantum relative entropy
Notes
The Renyi entropy is defined as the function
\[D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log(\Psi_\alpha(X, Y)),\]where \(\Psi_\alpha\) is the quasi-relative entropy defined as
\[\Psi_\alpha(X, Y) = \text{tr}[ X^\alpha Y^{1-\alpha} ].\]Note that \(\Psi_\alpha\) is jointly concave for \(\alpha\in[1/2, 1]\), and jointly convex for \(\alpha\in[-1, 0] \cup [1, 2]\), whereas \(D_\alpha\) is jointly convex for \(\alpha\in[0, 1)\), but is neither convex nor concave for \(\alpha\in[-1, 0) \cup (1, 2]\).
Note that due to monotonicity of \(x \mapsto \log(x)\), we can minimize the sandwiched Renyi entropy by using the identities
\[\min_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \max_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right),\]if \(\alpha\in[0, 1)\), and
\[\min_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \min_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right),\]if \(\alpha\in(1, 2]\). Similarly, we can maximize the Renyi entropy by using the identities
\[\max_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \min_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right),\]for \(\alpha\in[-1, 0]\).