Block diagonal

QICS is designed to solve conic programs involving Cartesian products of cones. This makes it easy to take advantage of block-diagonal structures arising in semidefeinite programs. As an example, consider the semidefinite program from Example 2 of [1]

\[ \begin{align}\begin{aligned}\min_{x \in \mathbb{R}^5} &&& 1.1x_1 - 10x_2 + 6.6x_3 + 19x_4 + 4.1x_5\\\text{subj. to} &&& \sum_{i=1}^5 F_ix_i - F_0 \succeq_{\mathbb{S}^7_+} 0,\end{aligned}\end{align} \]

where

\[\begin{split}\begin{gather} F_0 = \begin{bmatrix} -1.4 & -3.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ -3.2 & -28 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 15 & -12 & 2.1 & 0.0 & 0.0 \\ 0.0 & 0.0 & -12 & 16 & -3.8 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.1 & -3.8 & 15 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.8 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -4.0 \end{bmatrix}\\ \\ F_1 = \begin{bmatrix} 0.5 & 5.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 5.2 & -5.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 7.8 & -2.4 & 6.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & -2.4 & 4.2 & 6.5 & 0.0 & 0.0 \\ 0.0 & 0.0 & 6.0 & 6.5 & 2.1 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -4.5 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -3.5 \end{bmatrix}\\ \\ \vdots\\ \\ F_5 = \begin{bmatrix} -6.5 & -5.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ -5.4 & -6.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 6.7 & -7.2 & -3.6 & 0.0 & 0.0 \\ 0.0 & 0.0 & -7.2 & 7.3 & -3.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & -3.6 & -3.0 & -1.4 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.1 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.5 \end{bmatrix}. \end{gather}\end{split}\]

It is possible to model this problem using a single \(7\times7\) dimensional positive semidefinite cone \(\mathbb{S}^7_+\). However, it is computationally advantageous to take advantage of the block diagonal structure of the matrices \(F_i\) and model the problem using the Cartesian product of cones \(\mathbb{S}^2_+\times\mathbb{S}^3_+\times\mathbb{R}^2_+\), i.e., the semidefinite program is equivalent to

\[ \begin{align}\begin{aligned}\min_{x \in \mathbb{R}^5} &&& 1.1x_1 - 10x_2 + 6.6x_3 + 19x_4 + 4.1x_5\\\text{subj. to} &&& \sum_{i=1}^5 F_{i0}x_i - F_{00} \succeq_{\mathbb{S}^2_+} 0,\\&&& \sum_{i=1}^5 F_{i1}x_i - F_{01} \succeq_{\mathbb{S}^3_+} 0,\\&&& \sum_{i=1}^5 F_{i2}x_i - F_{02} \geq_{\mathbb{R}^2_+} 0,\end{aligned}\end{align} \]

where \(F_{i0}\in\mathbb{S}^2\), \(F_{i1}\in\mathbb{S}^3\), and \(F_{i2}\in\mathbb{R}^2\) represent the first, second, and third blocks of \(F_{i}\), respectively, e.g.,

\[\begin{split}\begin{gather} F_{00} = \begin{bmatrix} -1.4 & -3.2 \\ -3.2 & -28 \end{bmatrix}, \quad F_{01} = \begin{bmatrix} 15 & -12 & 2.1 \\ -12 & 16 & -3.8 \\ 2.1 & -3.8 & 15 \end{bmatrix}, \quad F_{02} = \begin{bmatrix} 1.8 \\ -4.0 \end{bmatrix}. \end{gather}\end{split}\]

We can easily solve this problem involving a Cartesian product of positive semidefinite cones and nonnegative orthants in QICS by defining an appropriate list of qics.cones.

import numpy as np

import qics

# Define objective function
c = np.array([[1.1, -10, 6.6, 19, 4.1]]).T

# Define linear constraints. Note that we have defined pre-vectorized
# the matrices for convenience
F = [
    [   # F0
        np.array([[-1.4, -3.2, -3.2, -28]]).T,
        np.array([[15, -12, 2.1, -12, 16, -3.8, 2.1, -3.8, 15]]).T,
        np.array([[1.8, -4.0]]).T
    ],
    [   # F1
        np.array([[0.5, 5.2, 5.2, -5.3]]).T,
        np.array([[7.8, -2.4, 6.0, -2.4, 4.2, 6.5, 6.0, 6.5, 2.1]]).T,
        np.array([[-4.5, -3.5]]).T
    ],
    [   #F2
        np.array([[1.7, 7.0, 7.0, -9.3]]).T,
        np.array([[-1.9, -0.9, -1.3, -0.9, -0.8, -2.1, -1.3, -2.1, 4.0]]).T,
        np.array([[-0.2, -3.7]]).T
    ],
    [   #F3
        np.array([[6.3, -7.5, -7.5, -3.3]]).T,
        np.array([[0.2, 8.8, 5.4, 8.8, 3.4, -0.4, 5.4, -0.4, 7.5]]).T,
        np.array([[-3.3, -4.0]]).T
    ],
    [   #F4
        np.array([[-2.4, -2.5, -2.5, -2.9]]).T,
        np.array([[3.4, -3.2, -4.5, -3.2, 3.0, -4.8, -4.5, -4.8, 3.6]]).T,
        np.array([[4.8, 9.7]]).T
    ],
    [   #F5
        np.array([[-6.5, -5.4, -5.4, -6.6]]).T,
        np.array([[6.7, -7.2, -3.6, -7.2, 7.3, -3.0, -3.6, -3.0, -1.4]]).T,
        np.array([[6.1, -1.5]]).T
    ]
]

h = -np.vstack(F[0])
G = -np.hstack([np.vstack(Fi) for Fi in F[1:]])

# Define cones to optimize over
cones = [
    qics.cones.PosSemidefinite(2),
    qics.cones.PosSemidefinite(3),
    qics.cones.NonNegOrthant(2),
]

# Initialize model and solver objects
model  = qics.Model(c=c, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

print("Optimal variable x is: ")
print(info["x_opt"].ravel())
Optimal variable x is:
[1.55164255 0.67096851 0.98149139 1.40657036 0.94216841]

References

  1. “SDPA (SemiDefinite Programming Algorithm) User’s Manual – Version 6.2.0.”, K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita, Research Reports on Mathematical and Computing Sciences Series B : Operations Research, 2002.