Quantum channels

Shannon’s seminal work for classical channels introduced two important fundamental limits of sending information through channels, and provided mathematical descriptions for these quantities [1].

  • Channel capacity: The maximum amount of information we can transmit through a noisy quantum channel.

  • Rate-distortion: The minimum amount of information required to compress and transmit a given message without exceeding a given distortion threshold.

We explore several of these settings below in the quantum setting.

Classical-quantum channel capacity

Consider a discrete input alphabet \(\mathcal{X}=\{ x_1, \ldots, x_m \}\) where each letter is sent according to a probability distribution \(p\in\mathbb{R}^m\). To send messages using this input alphabet through a quantum channel \(\mathcal{N}\), an encoder needs to first map these classical states to quantum states \(x_j\mapsto\rho_j\). After the state has been sent through the channel, a decoder performs a quantum measurement on the state to recover the original message.

Given this setup, for a given quantum channel \(\mathcal{N}\) which is characterized as a completely positive trace preserving linear map, the classical-quantum channel capacity is given by the Holevo-Schumacher–Westmoreland theorem [2,3]

\[ \begin{align}\begin{aligned}\max_{p \in \mathbb{R}^m} &&& S\biggl(\mathcal{N}\biggl(\sum_{i=1}^m p_i\rho_i\biggr)\biggr) - \sum_{i=1}^m p_iS(\mathcal{N}(\rho_i))\\\text{subj. to} &&& \sum_{i=1}^n p_i = 1\\&&& p \geq 0.\end{aligned}\end{align} \]

We can solve for this channel capacity using the qics.cones.QuantEntr cone as follows.

import numpy as np

import qics
from qics.quantum import entropy
from qics.quantum.random import density_matrix
from qics.vectorize import mat_to_vec, vec_dim

np.random.seed(1)

n = m = 16
vn = vec_dim(n, iscomplex=True)

# Generate random problem data
rhos = [density_matrix(n, iscomplex=True) for _ in range(m)]
rho_vecs = np.hstack(([mat_to_vec(rho) for rho in rhos]))

# Model problem using primal variables (p, t)
# Define objective function
c_p = np.array([[-entropy(rho)] for rho in rhos])
c_t = 1.0
c = np.block([[c_p], [c_t]])

# Build linear constraint Σ_i pi = 1
A = np.block([np.ones((1, m)), 0.0])
b = np.array([[1.0]])

# Build linear cone constraints
G = np.block([
    [-np.eye(m),       np.zeros((m, 1)) ],  # x_nn = p
    [np.zeros((1, m)), -np.ones((1, 1)) ],  # t_qe = t
    [np.zeros((1, m)), np.zeros((1, 1)) ],  # u_qe = 1
    [-rho_vecs,        np.zeros((vn, 1))]   # X_qe = Σ_i pi N(Xi)
])

h = np.block([[np.zeros((m, 1))], [0.0], [1.0], [np.zeros((vn, 1))]])

# Define cones to optimize over
cones = [
    qics.cones.NonNegOrthant(n),  # p >= 0
    qics.cones.QuantEntr(n, iscomplex=True),  # (t, 1, Σ_i pi N(Xi)) ∈ QE
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

Entanglement-assisted channel capacity

Consider the same alphabet and channel setup as the classical-quantum channel capacity. However, the sender and receiver share an unlimited number of entangled states prior to sending messages through the channel. Like before, the sender chooses a classical message to send, but now encodes their part of the entangled state to represent this message, then sends this through the quantum channel. The receiver combines this state with their own part of the entangled state, then jointly performs a measurement on them to recover the original message.

Given this setup, for a given quantum channel \(\mathcal{N}\) with Stinespring representation \(\mathcal{N}(\rho)=\text{tr}_E(V\rho V^\dagger)\), the entanglement-assisted channel capacity is given by the Bennet-Shor-Smolin-Thapliyal theorem [4]

\[ \begin{align}\begin{aligned}\max_{\rho \in \mathbb{H}^n} &&& S(\rho) - S(\text{tr}_B(V \rho V^\dagger)) + S(\text{tr}_E(V \rho V^\dagger))\\\text{subj. to} &&& \text{tr}[\rho] = 1\\&&& \rho \succeq 0.\end{aligned}\end{align} \]

The objective function is known as the quantum mutual information, and by recognizing that \(S(V\rho V^\dagger)=S(\rho)\), we can model this function by using a combination of qics.cones.QuantCondEntr and qics.cones.QuantEntr. As a concrete example, consider the amplitude damping channel defined by the isometry

\[\begin{split}V = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{\gamma} \\ 0 & \sqrt{1-\gamma} \\ 0 & 0 \end{bmatrix}\end{split}\]

and some parameter \(\gamma\in[0, 1]\). We can solve this in QICS as follows.

import numpy as np

import qics
from qics.quantum import p_tr
from qics.vectorize import eye, lin_to_mat, vec_dim

n = 2
N = n * n

vn = vec_dim(n)
vN = vec_dim(N)
cn = vec_dim(n, compact=True)

# Define amplitude damping channel
gamma = 0.5
V = np.array([
    [1., 0.              ],
    [0., np.sqrt(1-gamma)],
    [0., np.sqrt(gamma)  ],
    [0., 0.              ]
])

# Model problem using primal variables (t1, t2, cvec(X))
# Define objective functions
c = np.block([[1.0], [1.0], [np.zeros((cn, 1))]])

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (n, 1), compact=(True, False))
A = np.block([[0.0, 0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
VV = lin_to_mat(lambda X: V @ X @ V.conj().T, (n, N), compact=(True, False))
trE = lin_to_mat(lambda X: p_tr(X, (n, n), 0), (N, n), compact=(False, False))

G = np.block([
    [-1.0,              0.0,               np.zeros((1, cn))],  # t_qce = t1
    [np.zeros((vN, 1)), np.zeros((vN, 1)), -VV              ],  # X_qce = VXV'
    [0.0,               -1.0,              np.zeros((1, cn))],  # t_qe = t2
    [0.0,               0.0,               np.zeros((1, cn))],  # u_qe = 1
    [np.zeros((vn, 1)), np.zeros((vn, 1)), -trE @ VV        ],  # X_qe = tr_E(VXV')
    [np.zeros((vn, 1)), np.zeros((vn, 1)), -eye(n).T        ]   # X_psd = X
])

h = np.block([
    [0.0],
    [np.zeros((vN, 1))],
    [0.0],
    [1.0],
    [np.zeros((vn, 1))],
    [np.zeros((vn, 1))],
])

# Define cones to optimize over
cones = [
    qics.cones.QuantCondEntr((n, n), 1),  # (t1, VXV') ∈ QCE
    qics.cones.QuantEntr(n),  # (t2, 1, tr_E(XVX')) ∈ QE
    qics.cones.PosSemidefinite(n),  # X ⪰ 0
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

Quantum channel capacity of degradable channels

Now we turn our attention to the scenario where we want to send quantum information through a quantum channel. Instead of a classical alphabet, the sender has a quantum alphabet will be encoded, transmitted, and decoded by the receiver.

In general, the quantum channel capacity is given by a non-convex optimization problem. However, when a channel \(\mathcal{N}\) is degradable, meaning its complementary channel \(\mathcal{N}_\text{c}\) can be expressed as \(\mathcal{N}_\text{c}=\Xi\circ\mathcal{N}\) for some quantum channel \(\Xi\), then the quantum channel capacity is given by [5]

\[ \begin{align}\begin{aligned}\max_{\rho \in \mathbb{H}^n} &&& S(\mathcal{N}(\rho)) - S(\text{tr}_F(W \mathcal{N}(\rho) W^\dagger))\\\text{subj. to} &&& \text{tr}[\rho] = 1\\&&& \rho \succeq 0,\end{aligned}\end{align} \]

where \(W\) is the Stinespring isometry associated with \(\Xi\). Like the entanglement-assisted channel capacity example, we can model this using qics.cones.QuantCondEntr. As a concrete example, again consider the amplitude damping channel, which has Stinespring isometry for \(\Xi\) given by

\[\begin{split}W = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{\delta} \\ 0 & \sqrt{1-\delta} \\ 0 & 0 \end{bmatrix}\end{split}\]

where \(\delta=(1-2\gamma) / (1-\gamma)\). We show how QICS can solve this problem below.

import numpy as np

import qics
from qics.quantum import p_tr
from qics.vectorize import eye, lin_to_mat, vec_dim

n = 2
N = n * n

vn = vec_dim(n)
vN = vec_dim(N)
cn = vec_dim(n, compact=True)

# Define amplitude damping channel
gamma = 0.25
delta = (1 - 2 * gamma) / (1 - gamma)
V = np.array([
    [1., 0.              ],
    [0., np.sqrt(1-gamma)],
    [0., np.sqrt(gamma)  ],
    [0., 0.              ]
])
W = np.array([
    [1., 0.              ],
    [0., np.sqrt(delta)  ],
    [0., np.sqrt(1-delta)],
    [0., 0.              ]
])


def W_NX_W(X):
    return W @ p_tr(V @ X @ V.conj().T, (n, n), 1) @ W.conj().T


# Model problem using primal variables (t, cvec(X))
# Define objective functions
c = np.block([[1.0], [np.zeros((cn, 1))]])

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (n, 1), compact=(True, False))
A = np.block([[0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
W_NX_W_mat = lin_to_mat(W_NX_W, (n, N), compact=(True, False))

G = np.block([
    [-1.0,              np.zeros((1, cn))],  # t_qce = t
    [np.zeros((vN, 1)), -W_NX_W_mat      ],  # X_qce = WN(X)W'
    [np.zeros((vn, 1)), -eye(n).T        ]   # X_psd = X
])

h = np.block([[0.0], [np.zeros((vN, 1))], [np.zeros((vn, 1))]])

# Define cones to optimize over
cones = [
    qics.cones.QuantCondEntr((n, n), 1),  # (t, WN(X)W') ∈ QCE
    qics.cones.PosSemidefinite(n),  # X ⪰ 0
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

Entanglement-assisted rate-distortion

Whereas channel capacities quantify the maximum rate of information we can trasmit in a lossless manner, the rate-distortion function quantifies the maximum amount we can compress information in a lossy manner to transmit over a channel.

Consider a quantum state \(\sigma_A\) which we want to transmit in a lossy manner, without exceeding a distortion threshold \(D\). The minimum amount of information required to do this is given by the entanglement-assisted rate-distortion function [6,7], which involves solving

\[ \begin{align}\begin{aligned}\min_{\rho_{AB} \in \mathbb{H}^{n^2}} &&& -S(\rho_{AB}) + S(\text{tr}_A(\rho_{AB})) + S(\sigma_A)\\\text{subj. to} &&& \text{tr}_B(\rho_{AB}) = \sigma_A\\&&& 1 - \langle \psi | \rho_{AB} | \psi \rangle \leq D\\&&& \rho_{AB} \succeq 0,\end{aligned}\end{align} \]

where \(| \psi \rangle\) is the purification of \(\sigma_A\). We can model this problem using qics.cones.QuantCondEntr, which we demonstrate below.

import numpy as np

import qics
from qics.quantum import p_tr, purify, entropy
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, vec_dim, mat_to_vec

np.random.seed(1)

n = 4
N = n * n
vN = vec_dim(N, iscomplex=True)
cn = vec_dim(n, iscomplex=True, compact=True)

# Define random problem data
rho = density_matrix(n, iscomplex=True)
entr_rho = entropy(rho)
rho_cvec = mat_to_vec(rho, compact=True)

D = 0.25
Delta = np.eye(N) - purify(rho)
Delta_vec = mat_to_vec(Delta)

# Model problem using primal variables (t, X, d)
# Define objective function
c = np.block([[1.0], [np.zeros((vN, 1))], [0.0]])

# Build linear constraint matrices
tr_B = lin_to_mat(lambda X : p_tr(X, (n, n), 1), (N, n), iscomplex=True)

A = np.block([
    [np.zeros((cn, 1)), tr_B,        np.zeros((cn, 1))],  # tr_B[X] = rho
    [0.0,               Delta_vec.T, 1.0              ]   # d = D - <Delta, X>
])

b = np.block([[rho_cvec], [D]])

# Define cones to optimize over
cones = [
    qics.cones.QuantCondEntr((n, n), 0, iscomplex=True),  # (t, X) ∈ QCE
    qics.cones.NonNegOrthant(1)  # d = D - <Delta, X> >= 0
]

# Initialize model and solver objects
model  = qics.Model(c=c, A=A, b=b, cones=cones, offset=entr_rho)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

References

  1. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

  2. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Physical Review A, vol. 56, no. 1, p. 131, 1997.

  3. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 269– 273, 1998.

  4. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem,” IEEE transactions on Information Theory, vol. 48, no. 10, pp. 2637–2655, 2002.

  5. I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Communications in Mathematical Physics, vol. 256, pp. 287–303, 2005.

  6. N. Datta, M.-H. Hsieh, and M. M. Wilde, “Quantum rate distortion, reverse Shannon theorems, and source-channel separation,” IEEE Transactions on Information Theory, vol. 59, no. 1, pp. 615–630, 2012.

  7. M. M. Wilde, N. Datta, M.-H. Hsieh, and A. Winter, “Quantum rate-distortion coding with auxiliary resources,” IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6755–6773, 2013.