qics.Solver¶
- class qics.Solver(model, max_iter=100, max_time=3600, tol_gap=1e-08, tol_feas=1e-08, tol_infeas=1e-12, tol_ip=1e-13, tol_near=1000.0, verbose=2, ir=True, toa=True, init_pnt=None, use_invhess=None)[source]¶
A class representing an instance of a solver, and is parameterized by a conic program model and adjustable solver settings.
- Parameters:
- model
Model
Representation of a given conic program.
- max_iter
int
, optional Maximum number of solver iterations before terminating. The default is
100
.- max_time
float
, optional Maximum time elapsed, in seconds, before terminating. The default is
3600
.- tol_gap
float
, optional Stopping tolerance for (relative) optimality gap. The default is
1e-8
.- tol_feas
float
, optional Stopping tolerance for (relative) primal and dual feasibility. The default is
1e-8
.- tol_infeas
float
, optional Tolerance for detecting infeasible problem. The default is
1e-12
.- tol_ip
float
, optional Tolerance for detecting ill-posed problem. The default is
1e-13
.- tol_near
float
, optional Allowable margin for certifying near optimality when solver is stopped early. The default is
1e3
.- verbose{
0
,1
,2
,3
}, optional Verbosity level of the solver, where
0
: No output.1
: Only print problem and solution summary.2
: Also print summary of the solver at each iteration.3
: Also print summary of the stepper at each iteration.
The default is
2
.- ir
bool
, optional Whether to use iterative refinement when solving the KKT system. The default is
True
.- toa
bool
, optional Whether to use third-order adjustments to improve the stepping directions. The default is
True
.- init_pnt
Point
, optional Where to initialize the interior-point algorithm from. Variables which contain
nan
are flagged to be intialized using the default initialization method. The default isNone
, which intializes all variables using the default method.- use_invhess
bool
, optional Whether or not to avoid using inverse Hessian product oracles by solving a modified cone program with \(G^{-1}(\mathcal{K})=\{ x : Gx \in \mathcal{K} \}\). By default, this is
False
if \(G\neq-\mathbb{I}\), \(G\) is full column rank, and \(\mathcal{K}\) mainly consists ofQuantRelEntr
,OpPerspecEpi
, andOpPerspecTr
cones, and isTrue
otherwise.
- model
- solve()[source]¶
Run the primal-dual interior point solver for a given problem model.
- Returns:
dict
Dictionary which summarizes the solution of a conic program. Contains the following keys.
x_opt (
ndarray
) : Optimal primal variable \(x^*\).y_opt (
ndarray
) : Optimal dual variable \(y^*\).z_opt (
VecProduct
) : Optimal dual variable \(z^*\).s_opt (
VecProduct
) : Optimal primal variable \(s^*=h-Gx^*\).sol_status (
string
) : Solution status. Can either be:optimal
: Primal-dual optimal solution reachedpinfeas
: Detected primal infeasibilitydinfeas
: Detected dual infeasibilitynear_optimal
: Near primal-dual optimal solutionnear_pinfeas
: Near primal infeasibilitynear_dinfeas
: Near dual infeasibiltiyillposed
: Problem is ill-posedunknown
: Unknown solution status
exit_status (
string
) : Solver exit status. Can either be:solved
: Terminated at desired tolerancemax_iter
: Exceeded maximum allowable iterationsmax_time
: Exceeded maximum allowable timestep_failure
: Unable to take another stepslow_progress
: Residuals are decreasing too slowly
num_iter (
int
) : Number of solver iterations.solve_time (
float
) : Total time elapsed (in seconds).p_obj (
float
) : Optimal primal objective \(c^\top x^*\).d_obj (
float
) : Optimal dual objective \(-b^\top y^* - h^\top z^*\).opt_gap (
float
) : Relative optimality gap.p_feas (
float
) : Relative primal feasibility.d_feas (
float
) : Relative dual feasibiltiy.