qics.cones.QuantKeyDist¶
- class qics.cones.QuantKeyDist(G_info, Z_info, iscomplex=False)[source]¶
A class representing a quantum key distribution cone
\[\mathcal{QKD}_{\mathcal{G},\mathcal{Z}} = \text{cl}\{ (t, X) \in \mathbb{R} \times \mathbb{H}^n_{++} : t \geq -S(\mathcal{G}(X)) + S(\mathcal{Z}(\mathcal{G}(X))) \},\]where
\[S(X) = -\text{tr}[X \log(X)],\]is the quantum (von Neumann) entropy function, \(\mathcal{G}:\mathbb{H}^n\rightarrow\mathbb{H}^{mr}\) is a positive linear map, and \(\mathcal{Z}:\mathbb{H}^{mr}\rightarrow\mathbb{H}^{mr}\) is a pinching map that maps off-diagonal blocks to zero.
- Parameters:
- G_info
int
orlist
ofndarray
Defines the linear map \(\mathcal{G}\). There are two ways to specify this linear map.
If
G_info
is anint
, then \(\mathcal{G}\) is the identity map, i.e., \(\mathcal{G}(X)=X\), andG_info
specifies the dimension of \(X\).If
G_info
is alist
ofndarray
, thenG_info
specifies the Kraus operators \(K_i \in \mathbb{C}^{mr \times n }\) corresponding to \(\mathcal{G}\) such that\[\mathcal{G}(X) = \sum_{i} K_i X K_i^\dagger.\]
- Z_info
int
ortuple
orlist
ofndarray
Defines the pinching map \(\mathcal{Z}\), which is of the form
\[\mathcal{Z}(Y) = \sum_{i} Z_i Y Z_i^\dagger.\]There are three ways to specify this linear map.
If
Z_info
is anint
, then \(Z_i=|i \rangle\langle i| \otimes\mathbb{I}\) for \(i=1,\ldots,r\), wherer=Z_info
.If
Z_info
is atuple
of the form(dims, sys)
, wheredims=(n0, n1)
is atuple
ofint
andsys
is anint
, then\(Z_i=|i \rangle\langle i| \otimes\mathbb{I}_{n_1}\) for \(i=1,\ldots,n_0\) if
sys=0
, and\(Z_i=\mathbb{I}_{n_0}\otimes |i \rangle\langle i|\) for \(i=1,\ldots,n_1\) if
sys=1
.
We generalize this definition to the case where
dims
andsys
are lists of any length.If
Z_info
is alist
ofndarray
, thenZ_info
directly specifies the Kraus operators \(Z_i \in \mathbb{C}^{mr \times mr}\). Note that these Kraus operators must have a similar structure to those defined using the other options, i.e., must be diagonal matrices consisting of either ones or zeros, and \(Z_iZ_j=0\) for all \(i\neq j\).
- iscomplex
bool
Whether the matrix \(X\) is defined over \(\mathbb{H}^n\) (
True
), or restricted to \(\mathbb{S}^n\) (False
). The default isFalse
.
- G_info
See also
QuantRelEntr
Quantum relative entropy cone
Notes
The quantum key distribution cone can also be modelled by the quantum relative entropy by noting the identity
\[S(\mathcal{G}(X) \| \mathcal{Z}(\mathcal{G}(X))) = -S(\mathcal{G}(X)) + S(\mathcal{Z}(\mathcal{G}(X))).\]However, the cone oracles for the quantum key distribution cone are more efficient than those for the quantum relative entropy cone (especially when \(\mathcal{G}\) is the idenity map), so it is recommended to use the quantum key distribution cone where possible.