Noncommutative perspective

Measured relative entropy

Measured relative entropies are functions used to measure the amount of dissimilarity between two quantum states which arise in quantum hypothesis testing tasks. In [1], it was shown that the measured Renyi relative entropy of states \(Q_\alpha^M(\rho \| \sigma)\) could be computed using the epigraph of the operator perspective function.

For example, for \(\alpha\in(0, 1/2)\), we have

\[ \begin{align}\begin{aligned}Q_\alpha^M(\rho \| \sigma) \quad = &&\min_{\omega, \theta \in \mathbb{H}^n} &&& \alpha\,\text{tr}[\omega \rho] + (1 - \alpha) \text{tr}[\theta \sigma]\\&&\text{subj. to} &&& \theta \succeq \omega^{\frac{\alpha}{\alpha-1}}\\&&&&& \omega, \theta \succeq 0,\end{aligned}\end{align} \]

which we can model using a constraint of the form \((\theta, \mathbb{I}, \omega)\in\mathcal{OPE}\). We can solve this in QICS using qics.cones.OpPerspecEpi below.

import numpy as np

import qics
from qics.quantum.random import density_matrix
from qics.vectorize import eye, mat_to_vec, vec_dim

np.random.seed(1)

n = 4
vn = vec_dim(n, iscomplex=True)
cn = vec_dim(n, iscomplex=True, compact=True)

# Model problem using primal variables (T, X, Y)
# Define random problem data
alpha = 0.25
rho = density_matrix(n, iscomplex=True)
sigma = density_matrix(n, iscomplex=True)

# Define objective function
c_T = (1 - alpha) * mat_to_vec(sigma)
c_X = np.zeros((vn, 1))
c_Y = alpha * mat_to_vec(rho)
c = np.block([[c_T], [c_X], [c_Y]])

# Build linear constraint X = I
A = np.block([[np.zeros((cn, vn)), eye(n, iscomplex=True), np.zeros((cn, vn))]])
b = mat_to_vec(np.eye(n, dtype=np.complex128), compact=True)

# Define cones to optimize over
cones = [qics.cones.OpPerspecEpi(n, alpha / (alpha - 1), iscomplex=True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

D-optimal design

In [2], a matrix perspective reformulation technique is proposed to obtain a relaxation of the D-optimal design problem by solving the following conic optimization problem

\[ \begin{align}\begin{aligned}\max_{z\in\mathbb{R}^m, Y\in\mathbb{H}^n} &&& \text{tr}[P_{\log}(Y, A \text{diag}(z) A^\top + \varepsilon Y)] + (n - \text{tr})\log(\varepsilon)\\\text{subj. to} &&& \sum_{i=1}^m z_i = k\\&&& \text{tr}[Y] \leq k\\&&& 0 \leq z \leq 1\\&&& 0 \preceq Y \preceq \mathbb{I}.\end{aligned}\end{align} \]

where \(A\in\mathbb{R}^{n\times m}\) is a matrix of linear measurements, and \(k\) is the number of experiments we select. This was shown to achieve empirically tighter bounds compared to other relaxation strategies. We show how we can solve this in QICS below.

import numpy as np

import qics
from qics.vectorize import eye, lin_to_mat, mat_to_vec, vec_dim

np.random.seed(1)

n = 5
m = 10
k = 2
eps = 1e-6

vn = vec_dim(n)
cn = vec_dim(n, compact=True)

# Define random problem data
A_dat = 1 / (n**0.25) * np.random.randn(n, m)

# Model problem using primal variables (t, z, cvec(Y))
# Define objective function
c_t = np.ones((1, 1))
c_z = np.zeros((m, 1))
c_Y = mat_to_vec(np.eye(n), compact=True) * np.log(eps)
c = np.block([[c_t], [c_z], [c_Y]])

# Build linear constraint Σ_i zi = k
A = np.block([0.0, np.ones((1, m)), np.zeros((1, cn))])
b = np.array([[k]], dtype=np.float64)

# Build linear cone constraints
trace = lin_to_mat(lambda X: np.trace(X), (n, 1), compact=(True, False))
AdiagA = np.hstack([mat_to_vec(A_dat[:, [i]] @ A_dat[:, [i]].T) for i in range(m)])

G = np.block([
    [0.0,               np.zeros((1, m)),  trace            ],  # x_nn1 = k - tr[Y]
    [np.zeros((m, 1)),  -np.eye(m),        np.zeros((m, cn))],  # x_nn2 = z
    [np.zeros((m, 1)),  np.eye(m),         np.zeros((m, cn))],  # x_nn3 = 1 - z
    [np.zeros((vn, 1)), np.zeros((vn, m)), eye(n).T         ],  # X_psd = I - Y
    [-1.0,              np.zeros((1, m)),  np.zeros((1, cn))],  # t_ore = t
    [np.zeros((vn, 1)), np.zeros((vn, m)), -eye(n).T        ],  # X_ore = Y
    [np.zeros((vn, 1)), -AdiagA,           -eye(n).T * eps  ]   # Y_ore = Adiag(z)A' + eY
])  # fmt: skip

h = np.block([
    [k],
    [np.zeros((m, 1))],
    [np.ones((m, 1))],
    [mat_to_vec(np.eye(n))],
    [0.0],
    [np.zeros((vn, 1))],
    [np.zeros((vn, 1))]
])  # fmt: skip

# Define cones to optimize over
cones = [
    qics.cones.NonNegOrthant(1 + m + m),  # (k - tr[Y], -z, z - 1) >= 0
    qics.cones.PosSemidefinite(n),  # I - Y ⪰ 0
    qics.cones.OpPerspecTr(n, "log"),  # (t, Y, Adiag(z)A' + eY) ∈ ORE
]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones, offset=-n * np.log(eps))
solver = qics.Solver(model)

# Solve problem
info = solver.solve()

References

  1. M. Berta, O. Fawzi, and M. Tomamichel, “On variational expressions for quantum relative entropies,” Letters in Mathematical Physics, vol. 107, pp. 2239–2265, 2017.

  2. D. Bertsimas, R. Cory-Wright, and J. Pauphilet, “A new perspective on low-rank optimization,” Mathematical Programming, vol. 202, no. 1, pp. 47–92, 2023.