Noncommutative perspective¶
Measured relative entropy¶
Measured relative entropies are functions used to measure the amount of dissimilarity between two quantum states which arise in quantum hypothesis testing tasks. In [1], it was shown that the measured Renyi relative entropy of states \(Q_\alpha^M(\rho \| \sigma)\) could be computed using the epigraph of the operator perspective function.
For example, for \(\alpha\in(0, 1/2)\), we have
which we can model using a constraint of the form
\((\theta, \mathbb{I}, \omega)\in\mathcal{OPE}\). We can solve this in
QICS using qics.cones.OpPerspecEpi
below.
import numpy as np
import qics
from qics.quantum.random import density_matrix
from qics.vectorize import eye, mat_to_vec, vec_dim
np.random.seed(1)
n = 4
vn = vec_dim(n, iscomplex=True)
cn = vec_dim(n, iscomplex=True, compact=True)
# Model problem using primal variables (T, X, Y)
# Define random problem data
alpha = 0.25
rho = density_matrix(n, iscomplex=True)
sigma = density_matrix(n, iscomplex=True)
# Define objective function
c_T = (1 - alpha) * mat_to_vec(sigma)
c_X = np.zeros((vn, 1))
c_Y = alpha * mat_to_vec(rho)
c = np.block([[c_T], [c_X], [c_Y]])
# Build linear constraint X = I
A = np.block([[np.zeros((cn, vn)), eye(n, iscomplex=True), np.zeros((cn, vn))]])
b = mat_to_vec(np.eye(n, dtype=np.complex128), compact=True)
# Define cones to optimize over
cones = [qics.cones.OpPerspecEpi(n, alpha / (alpha - 1), iscomplex=True)]
# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, cones=cones)
solver = qics.Solver(model)
# Solve problem
info = solver.solve()
import numpy as np
import picos
import qics
np.random.seed(1)
n = 4
alpha = 0.25
rho = qics.quantum.random.density_matrix(n, iscomplex=True)
sigma = qics.quantum.random.density_matrix(n, iscomplex=True)
# Define problem
P = picos.Problem()
omega = picos.HermitianVariable("omega", n)
theta = picos.HermitianVariable("theta", n)
P.set_objective("min", alpha*(omega | rho).real + (1-alpha)*(theta | sigma).real)
P.add_constraint(theta >> picos.mtxgeomean(picos.I(n), omega, alpha/(alpha-1)))
# Solve problem
P.solve(solver="qics", verbosity=1)
D-optimal design¶
In [2], a matrix perspective reformulation technique is proposed to obtain a relaxation of the D-optimal design problem by solving the following conic optimization problem
where \(A\in\mathbb{R}^{n\times m}\) is a matrix of linear measurements, and \(k\) is the number of experiments we select. This was shown to achieve empirically tighter bounds compared to other relaxation strategies. We show how we can solve this in QICS below.
import numpy as np
import qics
from qics.vectorize import eye, lin_to_mat, mat_to_vec, vec_dim
np.random.seed(1)
n = 5
m = 10
k = 2
eps = 1e-6
vn = vec_dim(n)
cn = vec_dim(n, compact=True)
# Define random problem data
A_dat = 1 / (n**0.25) * np.random.randn(n, m)
# Model problem using primal variables (t, z, cvec(Y))
# Define objective function
c_t = np.ones((1, 1))
c_z = np.zeros((m, 1))
c_Y = mat_to_vec(np.eye(n), compact=True) * np.log(eps)
c = np.block([[c_t], [c_z], [c_Y]])
# Build linear constraint Σ_i zi = k
A = np.block([0.0, np.ones((1, m)), np.zeros((1, cn))])
b = np.array([[k]], dtype=np.float64)
# Build linear cone constraints
trace = lin_to_mat(lambda X: np.trace(X), (n, 1), compact=(True, False))
AdiagA = np.hstack([mat_to_vec(A_dat[:, [i]] @ A_dat[:, [i]].T) for i in range(m)])
G = np.block([
[0.0, np.zeros((1, m)), trace ], # x_nn1 = k - tr[Y]
[np.zeros((m, 1)), -np.eye(m), np.zeros((m, cn))], # x_nn2 = z
[np.zeros((m, 1)), np.eye(m), np.zeros((m, cn))], # x_nn3 = 1 - z
[np.zeros((vn, 1)), np.zeros((vn, m)), eye(n).T ], # X_psd = I - Y
[-1.0, np.zeros((1, m)), np.zeros((1, cn))], # t_ore = t
[np.zeros((vn, 1)), np.zeros((vn, m)), -eye(n).T ], # X_ore = Y
[np.zeros((vn, 1)), -AdiagA, -eye(n).T * eps ] # Y_ore = Adiag(z)A' + eY
]) # fmt: skip
h = np.block([
[k],
[np.zeros((m, 1))],
[np.ones((m, 1))],
[mat_to_vec(np.eye(n))],
[0.0],
[np.zeros((vn, 1))],
[np.zeros((vn, 1))]
]) # fmt: skip
# Define cones to optimize over
cones = [
qics.cones.NonNegOrthant(1 + m + m), # (k - tr[Y], -z, z - 1) >= 0
qics.cones.PosSemidefinite(n), # I - Y ⪰ 0
qics.cones.OpPerspecTr(n, "log"), # (t, Y, Adiag(z)A' + eY) ∈ ORE
]
# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones, offset=-n * np.log(eps))
solver = qics.Solver(model)
# Solve problem
info = solver.solve()
import numpy as np
import picos
np.random.seed(1)
n = 5
m = 10
k = 2
eps = 1e-6
# Define random problem data
A = 1 / (n**0.25) * np.random.randn(n, m)
# Define problem
P = picos.Problem()
z = picos.RealVariable("z", m)
Y = picos.SymmetricVariable("Y", n)
AzA = A * picos.diag(z) * A.T + eps * picos.I(n)
obj1 = -picos.trace(picos.oprelentr(Y, AzA))
obj2 = (n - picos.trace(Y)) * np.log(eps)
P.set_objective("max", obj1 + obj2)
P.add_constraint(picos.sum(z) == k)
P.add_constraint(picos.trace(Y) < k)
P.add_constraint(0 < z)
P.add_constraint(z < 1)
P.add_constraint(Y << np.eye(n))
# Solve problem
P.solve(solver="qics", verbosity=1)
References¶
M. Berta, O. Fawzi, and M. Tomamichel, “On variational expressions for quantum relative entropies,” Letters in Mathematical Physics, vol. 107, pp. 2239–2265, 2017.
D. Bertsimas, R. Cory-Wright, and J. Pauphilet, “A new perspective on low-rank optimization,” Mathematical Programming, vol. 202, no. 1, pp. 47–92, 2023.