qics.cones.OpPerspecTr¶
- class qics.cones.OpPerspecTr(n, func, iscomplex=False)[source]¶
A class representing a trace operator perspective epigraph cone
\[\mathcal{OPT}_{n, g} = \text{cl}\{ (t, X, Y) \in \mathbb{R} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq \text{tr}[P_g(X, Y)] \},\]for an operator concave function \(g:(0, \infty)\rightarrow\mathbb{R}\), where
\[P_g(X, Y) = X^{1/2} g(X^{-1/2} Y X^{-1/2}) X^{1/2},\]is the operator perspective of \(g\).
- Parameters:
See also
OpPerspecEpi
Operator perspective epigraph
Notes
We do not support operator perspectives for
p=0
,p=1
, andp=2
as these functions are more efficiently modelled using just the positive semidefinite cone.When \(g(x)=x^0\), \(P_g(X, Y)=X\).
When \(g(x)=x^1\), \(P_g(X, Y)=Y\).
When \(g(x)=x^2\), \(P_g(X, Y)=YX^{-1}Y\), which can be modelled using the Schur complement lemma, i.e., if \(X\succ 0\), then
\[\begin{split}\begin{bmatrix} X & Y \\ Y & T \end{bmatrix} \succeq 0 \qquad \Longleftrightarrow \qquad T \succeq YX^{-1}Y.\end{split}\]