qics.cones.ClassEntr¶
- class qics.cones.ClassEntr(n)[source]¶
A class representing a (homogenized) classical entropy cone
\[\mathcal{CE}_{n} = \text{cl}\{ (t, u, x) \in \mathbb{R} \times \mathbb{R}_{++} \times \mathbb{R}^n_{++} : t \geq -u H(u^{-1}x) \},\]where
\[H(x) = -\sum_{i=1}^n x_i \log(x_i),\]is the classical (Shannon) entropy function.
- Parameters:
- n
int
Dimension of the vector \(x\), i.e., how many terms are in the classical entropy function.
- n
See also
ClassRelEntr
Classical relative entropy cone
QuantEntr
(Homogenized) quantum entropy cone
Notes
The epigraph of the classical entropy can be obtained by enforcing the linear constraint \(u=1\).
Additionally, the exponential cone
\[\mathcal{E}=\{ (x,y,z)\in\mathbb{R}_+\times\mathbb{R}_+ \times\mathbb{R} : y \geq x \exp(z/x) \},\]can be modelled by realizing that if \((x,y,z)\in\mathcal{E}\), then \((-z, y, x)\in\mathcal{CE}_1\).