qics.cones.OpPerspecEpi¶
- class qics.cones.OpPerspecEpi(n, func, iscomplex=False)[source]¶
A class representing a operator perspective epigraph cone
\[\mathcal{OPE}_{n,g} = \text{cl}\{ (T, X, Y) \in \mathbb{H}^n \times \mathbb{H}^n_{++}\times\mathbb{H}^n_{++} : T \succeq P_g(X, Y) \},\]for an operator concave function \(g:(0,\infty)\rightarrow\mathbb{R}\), where
\[P_g(X, Y) = X^{1/2} g(X^{-1/2} Y X^{-1/2}) X^{1/2},\]is the operator perspective of \(g\).
- Parameters:
- n
int
Dimension of the matrices \(T\), \(X\), and \(Y\).
- func
string
orfloat
Choice for the function \(g\). Can be defined in the following ways.
- iscomplex
bool
Whether the matrix \(T\), \(X\), and \(Y\) is defined over \(\mathbb{H}^n\) (
True
), or restricted to \(\mathbb{S}^n\) (False
). The default isFalse
.
- n
See also
OpPerspecTr
Trace operator perspective cone
Notes
We do not support operator perspectives for
p=0
,p=1
, andp=2
as these functions are more efficiently modelled using just the positive semidefinite cone.When \(g(x)=x^0\), \(P_g(X, Y)=X\).
When \(g(x)=x^1\), \(P_g(X, Y)=Y\).
When \(g(x)=x^2\), \(P_g(X, Y)=YX^{-1}Y\), which can be modelled using the Schur complement lemma, i.e., if \(X\succ 0\), then
\[\begin{split}\begin{bmatrix} X & Y \\ Y & T \end{bmatrix} \succeq 0 \qquad \Longleftrightarrow \qquad T \succeq YX^{-1}Y.\end{split}\]