qics.cones.SandRenyiEntr¶
- class qics.cones.SandRenyiEntr(n, alpha, iscomplex=False)[source]¶
A class representing the epigraph of the (homogenized) sandwiched Renyi entropy, i.e., for some \(\alpha\in[1/2, 1)\),
\[\mathcal{SRE}_{n} = \text{cl}\{ (t,u,X,Y) \in \mathbb{R} \times \mathbb{R}_{++} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq u \hat{D}_\alpha(u^{-1}X \| u^{-1}Y) \},\]where
\[\hat{D}_\alpha(X \| Y) = \frac{1}{\alpha-1} \log(\text{tr}[ ( Y^{\frac{1-\alpha}{2\alpha}} X Y^{\frac{1-\alpha}{2\alpha}} )^\alpha ]),\]is the sandwiched \(\alpha\)-Renyi divergence.
- Parameters:
See also
RenyiEntr
Renyi entropy
QuasiEntr
Trace function used to define the sandwiched Renyi entropy
QuantRelEntr
Quantum relative entropy