Renyi entropy

Here we provide some examples of how to use QICS to solve optimization problems involving Renyi entropies.

Renyi mutual information

Let \(D_\alpha\) denote the \(\alpha\)-Renyi entropy. The Renyi mutual information for a bipartite quantum state \(\rho_{AB}\) is

\[I_{\alpha}(A;B)_\rho \quad=\quad \min_{\sigma_B} \quad D_\alpha(\rho_{AB} \| \rho_A \otimes \sigma_B) \quad \text{subj. to} \quad \text{tr}[\sigma_B] = 1.,\]

In [1], it was shown that the optimal \(\sigma_B^*\) is given by

\[\sigma_B^* = \frac{(\text{tr}_A((\rho_A^{1-\alpha}\otimes\mathbb{I})\rho_{AB}^\alpha))^{1/\alpha}} {\text{tr}[(\text{tr}_A((\rho_A^{1-\alpha}\otimes\mathbb{I})\rho_{AB}^\alpha))^{1/\alpha}]}.\]

We can verify this by using QICS as follows.

import numpy as np

import qics
import qics.quantum
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, vec_dim, mat_to_vec, vec_to_mat

np.random.seed(1)

n = 4
m = 4
N = n * m
alpha = 0.5

vN = vec_dim(N, iscomplex=True)
cm = vec_dim(m, compact=True, iscomplex=True)

# Define random problem data
rhoAB = density_matrix(N, iscomplex=True)
rhoA = qics.quantum.p_tr(rhoAB, (n, m), 1)

# Model problem using primal variables (t, sigB)
# Define objective function
c = np.vstack((np.array([[1.0]]), np.zeros((cm, 1))))

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (m, 1), compact=(True, True), iscomplex=True)
A = np.block([[0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
rhoA_kron = lin_to_mat(lambda X: np.kron(rhoA, X), (m, N), compact=(True, False),
                        iscomplex=True)

G = np.block([
    [-1.0,              np.zeros((1, cm)) ],  # t_re = t
    [0.0,               np.zeros((1, cm)) ],  # u_re = 1
    [np.zeros((vN, 1)), np.zeros((vN, cm))],  # X_re = rhoAB
    [np.zeros((vN, 1)), -rhoA_kron        ],  # Y_re = rhoA x sigB
])

h = np.block([
    [0.0              ],
    [1.0              ],
    [mat_to_vec(rhoAB)],
    [np.zeros((vN, 1))],
])

# Define cones to optimize over
cones = [qics.cones.RenyiEntr(N, alpha, True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()


# Check if solution satisfies identity
def mpower(X, p):
    D, U = np.linalg.eigh(X)
    return (U * np.power(D, p)) @ U.conj().T

sigB_numeric = vec_to_mat(info["x_opt"][1:], iscomplex=True, compact=True)

temp = np.kron(mpower(rhoA, 1-alpha), np.eye(m)) @ mpower(rhoAB, alpha)
temp = mpower(qics.quantum.p_tr(temp, (n, m), 0), 1 / alpha)
sigB_analytic = temp / np.trace(temp)

print("Analytic solution:")
print(np.round(sigB_numeric, 3))
print("Numerical solution:")
print(np.round(sigB_analytic, 3))
Analytic solution:
[[ 0.257+0.j     0.016+0.021j -0.007-0.031j -0.008+0.026j]
 [ 0.016-0.021j  0.247+0.j    -0.02 +0.05j  -0.033+0.025j]
 [-0.007+0.031j -0.02 -0.05j   0.251+0.j    -0.008+0.017j]
 [-0.008-0.026j -0.033-0.025j -0.008-0.017j  0.245+0.j   ]]
Numerical solution:
[[ 0.257+0.j     0.016+0.021j -0.007-0.031j -0.008+0.026j]
 [ 0.016-0.021j  0.247-0.j    -0.02 +0.05j  -0.033+0.025j]
 [-0.007+0.031j -0.02 -0.05j   0.251+0.j    -0.008+0.017j]
 [-0.008-0.026j -0.033-0.025j -0.008-0.017j  0.245+0.j   ]]

Due to monotonicity of the logarithm, when \(\alpha\in[0, 1)\), we can equivalently compute the Renyi mutual information as

\[I_{\alpha}(A;B)_\rho \quad=\quad \frac{1}{\alpha - 1} \log\left( \max_{\text{tr}[\sigma_B] = 1} \Psi_\alpha(\rho_{AB}, \rho_A\otimes\sigma_B) \right),\]

where

\[\Psi_\alpha(X, Y) = \text{tr}[ X^\alpha Y^{1-\alpha} ],\]

see QuasiEntr. We can check the same identity by minimizing the trace function \(\Psi_\alpha\) instead of directly minimizing the Renyi entropy by using nearly the same code.

import numpy as np

import qics
import qics.quantum
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, vec_dim, mat_to_vec, vec_to_mat

np.random.seed(1)

n = 4
m = 4
N = n * m
alpha = 0.5

vN = vec_dim(N, iscomplex=True)
cm = vec_dim(m, compact=True, iscomplex=True)

# Define random problem data
rhoAB = density_matrix(N, iscomplex=True)
rhoA = qics.quantum.p_tr(rhoAB, (n, m), 1)

# Model problem using primal variables (t, sigB)
# Define objective function
c = np.vstack((np.array([[1.0]]), np.zeros((cm, 1))))

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (m, 1), compact=(True, True), iscomplex=True)
A = np.block([[0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
rhoA_kron = lin_to_mat(lambda X: np.kron(rhoA, X), (m, N), compact=(True, False),
                        iscomplex=True)

G = np.block([
    [-1.0,              np.zeros((1, cm)) ],  # t_tre = t
    [np.zeros((vN, 1)), np.zeros((vN, cm))],  # X_tre = rhoAB
    [np.zeros((vN, 1)), -rhoA_kron        ],  # Y_tre = rhoA x sigB
])

h = np.block([
    [0.0              ],
    [mat_to_vec(rhoAB)],
    [np.zeros((vN, 1))],
])

# Define cones to optimize over
cones = [qics.cones.QuasiEntr(N, alpha, True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()


# Check if solution satisfies identity
def mpower(X, p):
    D, U = np.linalg.eigh(X)
    return (U * np.power(D, p)) @ U.conj().T

sigB_numeric = vec_to_mat(info["x_opt"][1:], iscomplex=True, compact=True)

temp = np.kron(mpower(rhoA, 1-alpha), np.eye(m)) @ mpower(rhoAB, alpha)
temp = mpower(qics.quantum.p_tr(temp, (n, m), 0), 1 / alpha)
sigB_analytic = temp / np.trace(temp)

print("Analytic solution:")
print(np.round(sigB_numeric, 3))
print("Numerical solution:")
print(np.round(sigB_analytic, 3))
Analytic solution:
[[ 0.257+0.j     0.016+0.021j -0.007-0.031j -0.008+0.026j]
 [ 0.016-0.021j  0.247+0.j    -0.02 +0.05j  -0.033+0.025j]
 [-0.007+0.031j -0.02 -0.05j   0.251+0.j    -0.008+0.017j]
 [-0.008-0.026j -0.033-0.025j -0.008-0.017j  0.245+0.j   ]]
Numerical solution:
[[ 0.257+0.j     0.016+0.021j -0.007-0.031j -0.008+0.026j]
 [ 0.016-0.021j  0.247-0.j    -0.02 +0.05j  -0.033+0.025j]
 [-0.007+0.031j -0.02 -0.05j   0.251+0.j    -0.008+0.017j]
 [-0.008-0.026j -0.033-0.025j -0.008-0.017j  0.245+0.j   ]]

The advantage of optimizing the trace function is that \(\Psi_\alpha\) is jointly concave for \(\alpha\in[1/2, 1]\), and jointly convex for \(\alpha\in[-1, 0] \cup [1, 2]\), whereas \(D_\alpha\) is jointly convex for \(\alpha\in[0, 1)\), but is neither convex nor concave for \(\alpha\in[-1, 0) \cup (1, 2]\). Therefore, QICS supports \(\Psi_\alpha\) for a wider range of \(\alpha\). However, sometimes it is not straightforward to reformulate an optimization problem involving the Renyi entropy into an equivalent convex problem involving the trace function.

Sandwiched Renyi mutual information

Similarly, let \(\hat{D}_\alpha\) denote the sandwiched \(\alpha\)-Renyi entropy. The sandwiched Renyi mutual information for a bipartite quantum state \(\rho_{AB}\) is

\[\hat{I}_{\alpha}(A;B)_\rho \quad=\quad \min_{\sigma_B} \quad \hat{D}_\alpha(\rho_{AB} \| \rho_A \otimes \sigma_B) \quad \text{subj. to} \quad \text{tr}[\sigma_B] = 1.\]

In [1], it was shown that the optimal \(\sigma_B^*\) satisfies

\[\sigma_B^* = \frac{\text{tr}_A(((\rho_A \otimes \sigma_B^*)^{\frac{1-\alpha}{2\alpha}} \rho_{AB} (\rho_A \otimes \sigma_B^*)^{\frac{1-\alpha}{2\alpha}})^{1/\alpha})} {\text{tr}[((\rho_A \otimes \sigma_B^*)^{\frac{1-\alpha}{2\alpha}} \rho_{AB} (\rho_A \otimes \sigma_B^*)^{\frac{1-\alpha}{2\alpha}})^{1/\alpha}]}.\]

We can verify this by using QICS as follows.

import numpy as np

import qics
import qics.quantum
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, vec_dim, mat_to_vec, vec_to_mat

np.random.seed(1)

n = 4
m = 4
N = n * m
alpha = 0.75

vN = vec_dim(N, iscomplex=True)
cm = vec_dim(m, compact=True, iscomplex=True)

# Define random problem data
rhoAB = density_matrix(N, iscomplex=True)
rhoA = qics.quantum.p_tr(rhoAB, (n, m), 1)

# Model problem using primal variables (t, sigB)
# Define objective function
c = np.vstack((np.array([[1.0]]), np.zeros((cm, 1))))

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (m, 1), compact=(True, True), iscomplex=True)
A = np.block([[0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
rhoA_kron = lin_to_mat(lambda X: np.kron(rhoA, X), (m, N), compact=(True, False),
                       iscomplex=True)

G = np.block([
    [-1.0,              np.zeros((1, cm)) ],   # t_sre = t
    [np.zeros((vN, 1)), np.zeros((vN, cm))],   # X_sre = rhoAB
    [np.zeros((vN, 1)), -rhoA_kron         ],  # Y_sre = rhoA x sigB
])

h = np.block([
    [0.0              ],
    [mat_to_vec(rhoAB)],
    [np.zeros((vN, 1))],
])

# Define cones to optimize over
cones = [qics.cones.SandQuasiEntr(N, alpha, True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model, verbose=3)

# Solve problem
info = solver.solve()


# Check if solution satisfies identity
def mpower(X, p):
    D, U = np.linalg.eigh(X)
    return (U * np.power(D, p)) @ U.conj().T

LHS = vec_to_mat(info["x_opt"][1:], iscomplex=True, compact=True)

temp = mpower(np.kron(rhoA, LHS), (1-alpha)/(2*alpha))
temp = mpower(temp @ rhoAB @ temp, alpha)
RHS = qics.quantum.p_tr(temp, (n, m), 0) / np.trace(temp)

print("LHS of identity is:")
print(np.round(LHS, 3))
print("RHS of identity is:")
print(np.round(RHS, 3))
LHS of identity is:
[[ 0.258+0.j     0.01 +0.019j -0.009-0.026j -0.007+0.023j]
 [ 0.01 -0.019j  0.247+0.j    -0.018+0.046j -0.031+0.025j]
 [-0.009+0.026j -0.018-0.046j  0.246+0.j    -0.008+0.013j]
 [-0.007-0.023j -0.031-0.025j -0.008-0.013j  0.249+0.j   ]]
RHS of identity is:
[[ 0.258+0.j     0.01 +0.019j -0.009-0.026j -0.007+0.023j]
 [ 0.01 -0.019j  0.247-0.j    -0.018+0.046j -0.031+0.025j]
 [-0.009+0.026j -0.018-0.046j  0.246+0.j    -0.008+0.013j]
 [-0.007-0.023j -0.031-0.025j -0.008-0.013j  0.249+0.j   ]]

Just as for the Renyi entropy, due to monotonicity of the logarithm, when \(\alpha\in[1/2, 1)\), we can equivalently compute the sandwiched Renyi mutual information as

\[\hat{I}_{\alpha}(A;B)_\rho \quad=\quad \frac{1}{\alpha - 1} \log\left( \max_{\text{tr}[\sigma_B] = 1} \hat{\Psi}_\alpha(\rho_{AB}, \rho_A\otimes\sigma_B) \right),\]

where

\[\hat{\Psi}_\alpha(X, Y) = \text{tr}\!\left[ \left(Y^\frac{1-\alpha}{2\alpha} X Y^\frac{1-\alpha}{2\alpha} \right)^\alpha \right].\]

see SandQuasiEntr. We can check the same identity by minimizing the trace function \(\\hat{Psi}_\alpha\) instead of directly minimizing the sandwiched Renyi entropy by using nearly the same code.

import numpy as np

import qics
import qics.quantum
from qics.quantum.random import density_matrix
from qics.vectorize import lin_to_mat, vec_dim, mat_to_vec, vec_to_mat

np.random.seed(1)

n = 4
m = 4
N = n * m
alpha = 0.75

vN = vec_dim(N, iscomplex=True)
cm = vec_dim(m, compact=True, iscomplex=True)

# Define random problem data
rhoAB = density_matrix(N, iscomplex=True)
rhoA = qics.quantum.p_tr(rhoAB, (n, m), 1)

# Model problem using primal variables (t, sigB)
# Define objective function
c = np.vstack((np.array([[1.0]]), np.zeros((cm, 1))))

# Build linear constraint tr[X] = 1
trace = lin_to_mat(lambda X: np.trace(X), (m, 1), compact=(True, True), iscomplex=True)
A = np.block([[0.0, trace]])
b = np.array([[1.0]])

# Build conic linear constraints
rhoA_kron = lin_to_mat(lambda X: np.kron(rhoA, X), (m, N), compact=(True, False),
                        iscomplex=True)

G = np.block([
    [-1.0,              np.zeros((1, cm)) ],  # t_tre = t
    [np.zeros((vN, 1)), np.zeros((vN, cm))],  # X_tre = rhoAB
    [np.zeros((vN, 1)), -rhoA_kron        ],  # Y_tre = rhoA x sigB
])

h = np.block([
    [0.0              ],
    [mat_to_vec(rhoAB)],
    [np.zeros((vN, 1))],
])

# Define cones to optimize over
cones = [qics.cones.SandQuasiEntr(N, alpha, True)]

# Initialize model and solver objects
model = qics.Model(c=c, A=A, b=b, G=G, h=h, cones=cones)
solver = qics.Solver(model)

# Solve problem
info = solver.solve()


# Check if solution satisfies identity
def mpower(X, p):
    D, U = np.linalg.eigh(X)
    return (U * np.power(D, p)) @ U.conj().T

LHS = vec_to_mat(info["x_opt"][1:], iscomplex=True, compact=True)

temp = mpower(np.kron(rhoA, LHS), (1-alpha)/(2*alpha))
temp = mpower(temp @ rhoAB @ temp, alpha)
RHS = qics.quantum.p_tr(temp, (n, m), 0) / np.trace(temp)

print("LHS of identity is:")
print(np.round(LHS, 3))
print("RHS of identity is:")
print(np.round(RHS, 3))
LHS of identity is:
[[ 0.258+0.j     0.01 +0.019j -0.009-0.026j -0.007+0.023j]
 [ 0.01 -0.019j  0.247+0.j    -0.018+0.046j -0.031+0.025j]
 [-0.009+0.026j -0.018-0.046j  0.246+0.j    -0.008+0.013j]
 [-0.007-0.023j -0.031-0.025j -0.008-0.013j  0.249+0.j   ]]
RHS of identity is:
[[ 0.258+0.j     0.01 +0.019j -0.009-0.026j -0.007+0.023j]
 [ 0.01 -0.019j  0.247-0.j    -0.018+0.046j -0.031+0.025j]
 [-0.009+0.026j -0.018-0.046j  0.246+0.j    -0.008+0.013j]
 [-0.007-0.023j -0.031-0.025j -0.008-0.013j  0.249+0.j   ]]

The advantage of optimizing the trace function is that \(\hat{\Psi}_\alpha\) is jointly concave for \(\alpha\in[1/2, 1]\), and jointly convex for \(\alpha\in[1, 2]\), whereas \(D_\alpha\) is jointly convex for \(\alpha\in[1/2, 1)\), but is neither convex nor concave for \(\alpha\in(1, 2]\). Therefore, QICS supports \(\hat{\Psi}_\alpha\) for a wider range of \(\alpha\). However, sometimes it is not straightforward to reformulate an optimization problem involving the sandwiched Renyi entropy into an equivalent convex problem involving the trace function.

References

1. M. Hayashi and M. Tomamichel, “Correlation detection and an operational interpretation of the Renyi mutual information,” Journal of Mathematical Physics, vol. 57, no. 10, 2016.