# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
import scipy as sp
from qics._utils.gradient import D1_log, D2_log, scnd_frechet
from qics._utils.linalg import congr_multi, dense_dot_x, inp
from qics.cones.base import Cone, get_central_ray_entr
from qics.vectorize import vec_to_mat
[docs]
class QuantEntr(Cone):
r"""A class representing a (homogenized) quantum entropy cone
.. math::
\mathcal{QE}_{n} = \text{cl}\{ (t, u, X) \in \mathbb{R} \times
\mathbb{R}_{++} \times \mathbb{H}^n_{++} : t \geq -u S(u^{-1}X) \},
where
.. math::
S(X) = -\text{tr}[X \log(X)],
is the quantum (von Neumann) entropy function.
Parameters
----------
n : :obj:`int`
Dimension of the matrix :math:`X`.
iscomplex : :obj:`bool`
Whether the matrix :math:`X` is defined over :math:`\mathbb{H}^n`
(``True``), or restricted to :math:`\mathbb{S}^n` (``False``). The
default is ``False``.
See also
--------
ClassEntr : (Homogenized) classical entropy cone
QuantRelEntr : Quantum relative entropy cone
Notes
-----
The epigraph of the quantum entropy can be obtained by enforcing the
linear constraint :math:`u=1`.
"""
def __init__(self, n, iscomplex=False):
# Dimension properties
self.n = n
self.iscomplex = iscomplex
self.nu = 2 + self.n # Barrier parameter
if iscomplex:
self.dim = [1, 1, 2 * n * n]
self.type = ["r", "r", "h"]
self.dtype = np.complex128
else:
self.dim = [1, 1, n * n]
self.type = ["r", "r", "s"]
self.dtype = np.float64
# Update flags
self.feas_updated = False
self.grad_updated = False
self.hess_aux_updated = False
self.invhess_aux_updated = False
self.congr_aux_updated = False
self.dder3_aux_updated = False
return
def get_iscomplex(self):
return self.iscomplex
def get_init_point(self, out):
(t0, u0, x0) = get_central_ray_entr(self.n)
point = [
np.array([[t0]]),
np.array([[u0]]),
np.eye(self.n, dtype=self.dtype) * x0,
]
self.set_point(point, point)
out[0][:] = point[0]
out[1][:] = point[1]
out[2][:] = point[2]
return out
def get_feas(self):
if self.feas_updated:
return self.feas
self.feas_updated = True
(self.t, self.u, self.X) = self.primal
# Check that u and X are positive (definite)
self.Dx, self.Ux = np.linalg.eigh(self.X)
if (self.u <= 0) or any(self.Dx <= 0):
self.feas = False
return self.feas
# Check that t > -u S(X/u) = tr[X log(X)] - tr[X] log(u)
self.trX = np.trace(self.X).real
self.log_Dx = np.log(self.Dx)
self.log_u = np.log(self.u[0, 0])
entr_X = inp(self.Dx, self.log_Dx)
entr_Xu = self.trX * self.log_u
self.z = self.t[0, 0] - (entr_X - entr_Xu)
self.feas = self.z > 0
return self.feas
def get_val(self):
return -np.log(self.z) - np.sum(self.log_Dx) - self.log_u
def update_grad(self):
assert self.feas_updated
assert not self.grad_updated
# Compute gradients of quantum entropy
# D_u S(u, X) = -tr[X] / u
self.ui = np.reciprocal(self.u)
self.DPhiu = -self.trX * self.ui
# D_X S(u, X) = log(X) + (1 - log(u)) I
log_X = (self.Ux * self.log_Dx) @ self.Ux.conj().T
log_X = (log_X + log_X.conj().T) * 0.5
self.DPhiX = log_X + np.eye(self.n) * (1.0 - self.log_u)
# Compute X^-1
inv_Dx = np.reciprocal(self.Dx)
inv_X_rt2 = self.Ux * np.sqrt(inv_Dx)
self.inv_X = inv_X_rt2 @ inv_X_rt2.conj().T
# Compute gradient of barrier function
self.zi = np.reciprocal(self.z)
self.grad = [
-self.zi,
self.zi * self.DPhiu - self.ui,
self.zi * self.DPhiX - self.inv_X,
]
self.grad_updated = True
def hess_prod_ip(self, out, H):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
(Ht, Hu, Hx) = H
UxHxUx = self.Ux.conj().T @ Hx @ self.Ux
# Hessian product of quantum entropy
# D2_uu S(u, X) [Hu] = tr[X] Hu / u^2
D2PhiuuH = self.trX * Hu * self.ui2
# D2_uX S(u, X) [Hx] = -tr[Hx] / u
D2PhiuXH = -np.trace(Hx).real * self.ui
# D2_Xu S(u, X) [Hu] = -I Hu / u
D2PhiXuH = -np.eye(self.n) * Hu * self.ui
# D2_XX S(u, X) [Hx] = Ux [log^[1](Dx) .* (Ux' Hx Ux)] Ux'
D2PhiXXH = self.Ux @ (self.D1x_log * UxHxUx) @ self.Ux.conj().T
# ======================================================================
# Hessian products with respect to t
# ======================================================================
# D2_t F(t, u, X)[Ht, Hu, Hx]
# = (Ht - D_u S(u, X)[Hu] - D_X S(u, X)[Hx]) / z^2
out[0][:] = (Ht - self.DPhiu * Hu - inp(self.DPhiX, Hx)) * self.zi2
# ======================================================================
# Hessian products with respect to u
# ======================================================================
# Hessian product of barrier function
# D2_u F(t, u, X)[Ht, Hu, Hx]
# = -D2_t F(t, u, X)[Ht, Hu, Hx] * D_u S(u, X)
# + (D2_uu S(u, X)[Hu] + D2_uX S(u, X)[Hx]) / z
# + Hu / u^2
out_u = -out[0] * self.DPhiu
out_u += self.zi * (D2PhiuuH + D2PhiuXH)
out_u += Hu * self.ui2
out[1][:] = out_u
# ======================================================================
# Hessian products with respect to X
# ======================================================================
# D2_X F(t, u, X)[Ht, Hu, Hx]
# = -D2_t F(t, u, X)[Ht, Hu, Hx] * D_X S(u, X)
# + (D2_Xu S(u, X)[Hu] + D2_XX S(u, X)[Hx]) / z
# + X^-1 Hx X^-1
out_X = -out[0] * self.DPhiX
out_X += self.zi * (D2PhiXuH + D2PhiXXH)
out_X += self.inv_X @ Hx @ self.inv_X
out_X = (out_X + out_X.conj().T) * 0.5
out[2][:] = out_X
return out
def hess_congr(self, A):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.congr_aux_updated:
self.congr_aux(A)
p = A.shape[0]
lhs = np.zeros((p, sum(self.dim)))
work1, work2, work3 = self.work1, self.work2, self.work3
# ======================================================================
# Hessian products with respect to t
# ======================================================================
# D2_t F(t, u, X)[Ht, Hu, Hx]
# = (Ht - D_u S(u, X)[Hu] - D_X S(u, X)[Hx]) / z^2
DPhiX_vec = self.DPhiX.view(np.float64).reshape((-1, 1))
out_t = self.At - (self.Ax_vec @ DPhiX_vec).ravel()
out_t -= self.Au * self.DPhiu[0, 0]
out_t *= self.zi2
lhs[:, 0] = out_t
# ======================================================================
# Hessian products with respect to u
# ======================================================================
# Hessian products for quantum entropy
# D2_uu S(u, X) [Hu] = tr[X] Hu / u^2
D2PhiuuH = (self.trX * self.ui2) * self.Au
# D2_uX S(u, X) [Hx] = -tr[Hx] / u
D2PhiuXH = np.trace(self.Ax, axis1=1, axis2=2).real * self.ui
# Hessian product of barrier function
# D2_u F(t, u, X)[Ht, Hu, Hx]
# = -D2_t F(t, u, X)[Ht, Hu, Hx] * D_u S(u, X)
# + (D2_uu S(u, X)[Hu] + D2_uX S(u, X)[Hx]) / z
# + Hu / u^2
out_u = -out_t * self.DPhiu
out_u += self.zi * (D2PhiuuH - D2PhiuXH)
out_u += self.Au * self.ui2
lhs[:, 1] = out_u
# ====================================================================
# Hessian products with respect to X
# ====================================================================
# Hessian products for quantum entropy
# D2_XX S(u, X) [Hx] = Ux [log^[1](Dx) .* (Ux' Hx Ux)] Ux'
congr_multi(self.work1, self.Ux.conj().T, self.Ax, work2)
work1 *= self.D1x_comb
congr_multi(work3, self.Ux, work1, work2)
# D2_Xu S(u, X) [Hu] = -I Hu / u
work = (self.zi * self.ui[0, 0]) * self.Au.reshape(-1, 1)
work3[:, range(self.n), range(self.n)] -= work
# Hessian product of barrier function
# D2_X F(t, u, X)[Ht, Hu, Hx]
# = -D2_t F(t, u, X)[Ht, Hu, Hx] * D_X S(u, X)
# + (D2_Xu S(u, X)[Hu] + D2_XX S(u, X)[Hx]) / z
# + X^-1 Hx X^-1
np.outer(out_t, self.DPhiX, out=work1.reshape((p, -1)))
work3 -= work1
lhs[:, 2:] = work3.reshape((p, -1)).view(np.float64)
# Multiply A (H A')
return dense_dot_x(lhs, A.T)
def invhess_prod_ip(self, out, H):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.invhess_aux_updated:
self.update_invhessprod_aux()
(Ht, Hu, Hx) = H
Wu = Hu + Ht * self.DPhiu
Wx = Hx + Ht * self.DPhiX
work = self.Ux.conj().T @ Wx @ self.Ux
N_inv_Wx = self.Ux @ (self.D1x_comb_inv * work) @ self.Ux.conj().T
N_inv_Wx = (N_inv_Wx + N_inv_Wx.conj().T) * 0.5
# ======================================================================
# Inverse Hessian products with respect to u
# ======================================================================
# u = (Wu + tr[N \ Wx] / z) / ((1 + tr[X]/z) / u^2 - tr[N \ I] / z^2)
out_u = Wu * self.uz2 + np.trace(N_inv_Wx).real * self.uz
out_u /= (self.z2 + self.trX * self.z) - self.tr_N_inv_I
out[1][:] = out_u
# ======================================================================
# Inverse Hessian products with respect to X
# ======================================================================
# X = (N \ Wx) + u / z (N \ I)
out_X = N_inv_Wx + (out_u / self.uz) * self.N_inv_I
out[2][:] = out_X
# ======================================================================
# Inverse Hessian products with respect to t
# ======================================================================
# t = z^2 Ht + <DS(u, X), (u, X)>
out_t = self.z2 * Ht + self.DPhiu * out_u + inp(self.DPhiX, out_X)
out[0][:] = out_t
return out
def invhess_congr(self, A):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.invhess_aux_updated:
self.update_invhessprod_aux()
if not self.congr_aux_updated:
self.congr_aux(A)
# The inverse Hessian product applied on (Ht, Hu, Hx) for the QE barrier
# is
# (u, X) = M \ (Wu, Wx)
# t = z^2 Ht + <DPhi(u, X), (u, X)>
# where (Wu, Wx) = [(Hu, Hx) + Ht DPhi(u, X)]
# M = [ (1 + tr[X]/z) / u^2 -vec(I)' / zu ]
# [ -vec(I) / zu N ]
# and
# N = (Ux kron Ux) (1/z log + inv)^[1](Dx) (Ux' kron Ux')
#
# To solve linear systems with M, we simplify it by doing block
# elimination, in which case we get
# u = (Wu + tr[N \ Wx] / z) / ((1 + tr[X]/z) / u^2 - tr[N \ I] / z^2)
# X = (N \ Wx) + u / z (N \ I)
p = A.shape[0]
lhs = np.zeros((p, sum(self.dim)))
work1, work2, work3 = self.work1, self.work2, self.work3
# Compute Wu
Wu = self.Au + self.At * self.DPhiu[0, 0]
# Compute Wx
np.outer(self.At, self.DPhiX, out=work2.reshape((p, -1)))
np.add(self.Ax, work2, out=work1)
# Compute N \ Wx
congr_multi(work2, self.Ux.conj().T, work1, work3)
work2 *= self.D1x_comb_inv
congr_multi(work1, self.Ux, work2, work3)
# ======================================================================
# Inverse Hessian products with respect to u
# ======================================================================
# u = (Wu + tr[N \ Wx] / z) / ((1 + tr[X]/z) / u^2 - tr[N \ I] / z^2)
tr_N_inv_Wx = np.trace(work1, axis1=1, axis2=2).real
out_u = Wu * self.uz2[0, 0] + tr_N_inv_Wx * self.uz[0, 0]
out_u /= (self.z2 + self.trX * self.z) - self.tr_N_inv_I
lhs[:, 1] = out_u
# ======================================================================
# Inverse Hessian products with respect to X
# ======================================================================
# X = (N \ Wx) + u / z (N \ I)
np.outer(out_u / self.uz, self.N_inv_I, out=work2.reshape((p, -1)))
work1 += work2
out_X = work1.reshape((p, -1)).view(np.float64)
lhs[:, 2:] = out_X
# ======================================================================
# Inverse Hessian products with respect to t
# ======================================================================
DPhiX_vec = self.DPhiX.view(np.float64).reshape((-1, 1))
# t = z^2 Ht + <DS(u, X), (u, X)>
out_t = self.z2 * self.At
out_t += out_u * self.DPhiu[0, 0]
out_t += (out_X @ DPhiX_vec).ravel()
lhs[:, 0] = out_t
# Multiply A (H A')
return dense_dot_x(lhs, A.T)
def third_dir_deriv_axpy(self, out, H, a=True):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.dder3_aux_updated:
self.update_dder3_aux()
(Ht, Hu, Hx) = H
Hu2 = Hu * Hu
trHx = np.trace(Hx).real
chi = (Ht - self.DPhiu * Hu)[0, 0] - inp(self.DPhiX, Hx)
chi2 = chi * chi
UxHxUx = self.Ux.conj().T @ Hx @ self.Ux
# Quantum entropy Hessians
D2PhiuuH = self.trX * Hu * self.ui2
D2PhiuXH = -np.trace(Hx).real * self.ui
D2PhiXuH = -np.eye(self.n) * Hu * self.ui
D2PhiXXH = self.Ux @ (self.D1x_log * UxHxUx) @ self.Ux.conj().T
D2PhiuHH = inp(Hu, D2PhiuXH + D2PhiuuH)
D2PhiXHH = inp(Hx, D2PhiXXH + D2PhiXuH)
# Quantum entropy third order derivatives
D3Phiuuu = -2 * Hu2 * self.trX * self.ui3
D3PhiuXu = Hu * trHx * self.ui2
D3PhiuuX = D3PhiuXu
D3PhiXXX = scnd_frechet(self.D2x_log, UxHxUx, UxHxUx, self.Ux)
D3PhiXuu = (Hu2 * self.ui2) * np.eye(self.n)
# Third derivatives of barrier
dder3_t = -2 * self.zi3 * chi2 - self.zi2 * (D2PhiXHH + D2PhiuHH)
dder3_u = -dder3_t * self.DPhiu
dder3_u -= 2 * self.zi2 * chi * (D2PhiuXH + D2PhiuuH)
dder3_u += self.zi * (D3PhiuuX + D3PhiuXu + D3Phiuuu)
dder3_u -= 2 * Hu2 * self.ui3
dder3_X = -dder3_t * self.DPhiX
dder3_X -= 2 * self.zi2 * chi * (D2PhiXXH + D2PhiXuH)
dder3_X += self.zi * (D3PhiXXX + D3PhiXuu)
dder3_X -= 2 * self.inv_X @ Hx @ self.inv_X @ Hx @ self.inv_X
dder3_X = (dder3_X + dder3_X.conj().T) * 0.5
out[0][:] += dder3_t * a
out[1][:] += dder3_u * a
out[2][:] += dder3_X * a
return out
# ==========================================================================
# Auxilliary functions
# ==========================================================================
def congr_aux(self, A):
assert not self.congr_aux_updated
iscomplex = self.iscomplex
# Get slices and views of A matrix to be used in congruence computations
if sp.sparse.issparse(A):
A = A.tocsr()
self.Ax_vec = A[:, 2:]
if sp.sparse.issparse(A):
A = A.toarray()
Ax_dense = np.ascontiguousarray(A[:, 2:])
self.At = A[:, 0]
self.Au = A[:, 1]
self.Ax = np.array([vec_to_mat(Ax_k, iscomplex) for Ax_k in Ax_dense])
# Preallocate matrices we will need when performing these congruences
self.work1 = np.empty_like(self.Ax)
self.work2 = np.empty_like(self.Ax)
self.work3 = np.empty_like(self.Ax)
self.congr_aux_updated = True
def update_hessprod_aux(self):
assert not self.hess_aux_updated
assert self.grad_updated
self.zi2 = self.zi * self.zi
self.ui2 = self.ui * self.ui
D1x_inv = np.reciprocal(np.outer(self.Dx, self.Dx))
self.D1x_log = D1_log(self.Dx, self.log_Dx)
self.D1x_comb = self.zi * self.D1x_log + D1x_inv
self.hess_aux_updated = True
def update_invhessprod_aux(self):
assert not self.invhess_aux_updated
assert self.grad_updated
assert self.hess_aux_updated
self.z2 = self.z * self.z
self.uz = self.u * self.z
self.uz2 = self.uz * self.uz
self.D1x_comb_inv = np.reciprocal(self.D1x_comb)
N_inv_I_rt2 = self.Ux * np.sqrt(np.diag(self.D1x_comb_inv))
self.N_inv_I = N_inv_I_rt2 @ N_inv_I_rt2.conj().T
self.tr_N_inv_I = np.trace(self.N_inv_I).real
self.invhess_aux_updated = True
def update_dder3_aux(self):
assert not self.dder3_aux_updated
assert self.hess_aux_updated
self.zi3 = self.zi * self.zi2
self.ui3 = self.ui * self.ui2
self.D2x_log = D2_log(self.Dx, self.D1x_log)
self.dder3_aux_updated = True