Source code for qics.cones.renyi.quasientr

# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi

# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics

import numpy as np
import scipy as sp

from qics._utils.gradient import (
    D1_f,
    D2_f,
    scnd_frechet,
    scnd_frechet_multi,
    thrd_frechet,
)
from qics._utils.linalg import (
    cho_fact,
    cho_solve,
    congr_multi,
    dense_dot_x,
    inp,
    x_dot_dense,
)
from qics.cones.base import Cone, get_perspective_derivatives
from qics.vectorize import get_full_to_compact_op, vec_to_mat


[docs] class QuasiEntr(Cone): r"""A class representing the epigraph or hypograph of the quasi-relative entropy, i.e., .. math:: \mathcal{QE}_{n, \alpha} = \text{cl} \{ (t, X, Y) \in \mathbb{R} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq -\text{tr}[ X^\alpha Y^{1-\alpha} ] \}, when :math:`\alpha\in[0, 1]`, and .. math:: \mathcal{QE}_{n, \alpha} = \text{cl} \{ (t, X, Y) \in \mathbb{R} \times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++} : t \geq \text{tr}[ X^\alpha Y^{1-\alpha} ] \}, when :math:`\alpha\in[-1, 0] \cup [1, 2]`. Parameters ---------- n : :obj:`int` Dimension of the matrices :math:`X` and :math:`Y`. alpha : :obj:`float` The exponent :math:`\alpha` used to parameterize the quasi-relative entropy. iscomplex : :obj:`bool` Whether the matrices :math:`X` and :math:`Y` are defined over :math:`\mathbb{H}^n` (``True``), or restricted to :math:`\mathbb{S}^n` (``False``). The default is ``False``. See also -------- RenyiEntr : Renyi entropy SandQuasiEntr : Sandwiched quasi-relative entropy QuantRelEntr : Quantum relative entropy Notes ----- The Renyi entropy is defined as the function .. math:: D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log(\Psi_\alpha(X, Y)), where :math:`\Psi_\alpha` is the quasi-relative entropy defined as .. math:: \Psi_\alpha(X, Y) = \text{tr}[ X^\alpha Y^{1-\alpha} ]. Note that :math:`\Psi_\alpha` is jointly concave for :math:`\alpha\in[1/2, 1]`, and jointly convex for :math:`\alpha\in[-1, 0] \cup [1, 2]`, whereas :math:`D_\alpha` is jointly convex for :math:`\alpha\in[0, 1)`, but is neither convex nor concave for :math:`\alpha\in[-1, 0) \cup (1, 2]`. Note that due to monotonicity of :math:`x \mapsto \log(x)`, we can minimize the sandwiched Renyi entropy by using the identities .. math:: \min_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \max_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right), if :math:`\alpha\in[0, 1)`, and .. math:: \min_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \min_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right), if :math:`\alpha\in(1, 2]`. Similarly, we can maximize the Renyi entropy by using the identities .. math:: \max_{(X,Y)\in\mathcal{C}} D_\alpha(X \| Y) = \frac{1}{\alpha - 1} \log\left( \min_{(X,Y)\in\mathcal{C}} \Psi_\alpha(X, Y) \right), for :math:`\alpha\in[-1, 0]`. """ def __init__(self, n, alpha, iscomplex=False): assert -1 <= alpha and alpha <= 2 self.n = n self.alpha = alpha self.iscomplex = iscomplex self.nu = 1 + 2 * n # Barrier parameter if iscomplex: self.vn = n * n self.dim = [1, 2 * n * n, 2 * n * n] self.type = ["r", "h", "h"] self.dtype = np.complex128 else: self.vn = n * (n + 1) // 2 self.dim = [1, n * n, n * n] self.type = ["r", "s", "s"] self.dtype = np.float64 self.idx_X = slice(1, 1 + self.dim[1]) self.idx_Y = slice(1 + self.dim[1], sum(self.dim)) # Get function handles for g(x)=x^α # and their first, second and third derivatives perspective_derivatives = get_perspective_derivatives(alpha) self.g, self.dg, self.d2g, self.d3g = perspective_derivatives["g"] # Get function handles for h(x)=x^β where β=1-α # and their first, second and third derivatives b = 1 - alpha self.h = lambda x: np.power(x, b) self.dh = lambda x: np.power(x, b - 1) * b self.d2h = lambda x: np.power(x, b - 2) * (b * (b - 1)) self.d3h = lambda x: np.power(x, b - 3) * (b * (b - 1) * (b - 2)) # Get sparse operator to convert from full to compact vectorizations self.F2C_op = get_full_to_compact_op(n, iscomplex) # Update flags self.feas_updated = False self.grad_updated = False self.hess_aux_updated = False self.invhess_aux_updated = False self.invhess_aux_aux_updated = False self.congr_aux_updated = False return def get_iscomplex(self): return self.iscomplex def get_init_point(self, out): (t0, x0, y0) = self.get_central_ray() point = [ np.array([[t0]]), np.eye(self.n, dtype=self.dtype) * x0, np.eye(self.n, dtype=self.dtype) * y0, ] self.set_point(point, point) out[0][:] = point[0] out[1][:] = point[1] out[2][:] = point[2] return out def get_feas(self): if self.feas_updated: return self.feas self.feas_updated = True (self.t, self.X, self.Y) = self.primal # Check that X and Y are positive definite self.Dx, self.Ux = np.linalg.eigh(self.X) self.Dy, self.Uy = np.linalg.eigh(self.Y) if any(self.Dx <= 0) or any(self.Dy <= 0): self.feas = False return self.feas # Construct X^α and Y^β Dgx = self.g(self.Dx) gX = (self.Ux * Dgx) @ self.Ux.conj().T self.gX = (gX + gX.conj().T) / 2 Dhy = self.h(self.Dy) hY = (self.Uy * Dhy) @ self.Uy.conj().T self.hY = (hY + hY.conj().T) / 2 # Check that t > tr[ X^α Y^β ] self.z = self.t[0, 0] - np.sum(self.gX * self.hY.conj()).real self.feas = self.z > 0 return self.feas def get_val(self): assert self.feas_updated return -np.log(self.z) - np.sum(np.log(self.Dx)) - np.sum(np.log(self.Dy)) def update_grad(self): assert self.feas_updated assert not self.grad_updated # Precompute useful expressions self.D1x_g = D1_f(self.Dx, self.g(self.Dx), self.dg(self.Dx)) self.D1y_h = D1_f(self.Dy, self.h(self.Dy), self.dh(self.Dy)) self.Ux_hY_Ux = self.Ux.conj().T @ self.hY @ self.Ux self.Uy_gX_Uy = self.Uy.conj().T @ self.gX @ self.Uy # Compute gradients of Renyi entropy # D_X Ψ(X, Y) = Dg(X)[h(Y)] self.DPhiX = self.Ux @ (self.D1x_g * self.Ux_hY_Ux) @ self.Ux.conj().T self.DPhiX = (self.DPhiX + self.DPhiX.conj().T) * 0.5 # D_Y Ψ(X, Y) = Dh(Y)[g(X)] self.DPhiY = self.Uy @ (self.D1y_h * self.Uy_gX_Uy) @ self.Uy.conj().T self.DPhiY = (self.DPhiY + self.DPhiY.conj().T) * 0.5 # Compute X^-1 and Y^-1 inv_Dx = np.reciprocal(self.Dx) inv_X_rt2 = self.Ux * np.sqrt(inv_Dx) self.inv_X = inv_X_rt2 @ inv_X_rt2.conj().T inv_Dy = np.reciprocal(self.Dy) inv_Y_rt2 = self.Uy * np.sqrt(inv_Dy) self.inv_Y = inv_Y_rt2 @ inv_Y_rt2.conj().T # Compute gradient of barrier function self.zi = np.reciprocal(self.z) self.grad = [ -self.zi, self.zi * self.DPhiX - self.inv_X, self.zi * self.DPhiY - self.inv_Y, ] self.grad_updated = True def hess_prod_ip(self, out, H): assert self.grad_updated if not self.hess_aux_updated: self.update_hessprod_aux() (Ht, Hx, Hy) = H UHxU = self.Ux.conj().T @ Hx @ self.Ux UHyU = self.Uy.conj().T @ Hy @ self.Uy # Hessian product of Renyi entropy # D2_XX Ψ(X, Y)[Hx] = D2g(X)[h(Y), Hx] D2PhiXXH = scnd_frechet(self.D2x_g, self.Ux_hY_Ux, UHxU, U=self.Ux) # D2_XY Ψ(X, Y)[Hy] = Dg(X)[Dh(Y)[Hy]] work = self.UxUy @ (self.D1y_h * UHyU) @ self.UxUy.conj().T D2PhiXYH = self.Ux @ (self.D1x_g * work) @ self.Ux.conj().T # D2_YX Ψ(X, Y)[Hx] = Dh(Y)[Dg(X)[Hx]] work = self.UxUy.conj().T @ (self.D1x_g * UHxU) @ self.UxUy D2PhiYXH = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T # D2_YY Ψ(X, Y)[Hy] = D2h(Y)[g(X), Hy] D2PhiYYH = scnd_frechet(self.D2y_h, self.Uy_gX_Uy, UHyU, U=self.Uy) # ====================================================================== # Hessian products with respect to t # ====================================================================== # D2_t F(t, X, Y)[Ht, Hx, Hy] = (Ht - D_X Ψ(X, Y)[Hx] - D_Y Ψ(X, Y)[Hy]) / z^2 out_t = Ht - inp(self.DPhiX, Hx) - inp(self.DPhiY, Hy) out_t *= self.zi2 out[0][:] = out_t # ====================================================================== # Hessian products with respect to X # ====================================================================== # D2_X F(t, X, Y)[Ht, Hx, Hy] = -D2_t F(t, X, Y)[Ht, Hx, Hy] * D_X Ψ(X, Y) # + (D2_XX Ψ(X, Y)[Hx] + D2_XY Ψ(X, Y)[Hy]) / z # + X^-1 Hx X^-1 out_X = -out_t * self.DPhiX out_X += self.zi * (D2PhiXYH + D2PhiXXH) out_X += self.inv_X @ Hx @ self.inv_X out_X = (out_X + out_X.conj().T) * 0.5 out[1][:] = out_X # ================================================================== # Hessian products with respect to Y # ================================================================== # Hessian product of barrier function # D2_Y F(t, X, Y)[Ht, Hx, Hy] = -D2_t F(t, X, Y)[Ht, Hx, Hy] * D_Y Ψ(X, Y) # + (D2_YX Ψ(X, Y)[Hx] + D2_YY Ψ(X, Y)[Hy]) / z # + Y^-1 Hy Y^-1 out_Y = -out_t * self.DPhiY out_Y += self.zi * (D2PhiYXH + D2PhiYYH) out_Y += self.inv_Y @ Hy @ self.inv_Y out_Y = (out_Y + out_Y.conj().T) * 0.5 out[2][:] = out_Y return out def hess_congr(self, A): assert self.grad_updated if not self.hess_aux_updated: self.update_hessprod_aux() if not self.congr_aux_updated: self.congr_aux(A) p = A.shape[0] lhs = np.empty((p, sum(self.dim))) work0, work1 = self.work0, self.work1 work2, work3 = self.work2, self.work3 work4, work5, work6 = self.work4, self.work5, self.work6 # ====================================================================== # Hessian products with respect to t # ====================================================================== # D2_t F(t, X, Y)[Ht, Hx, Hy] = (Ht - D_X Ψ(X, Y)[Hx] - D_Y Ψ(X, Y)[Hy]) / z^2 DPhiX_vec = self.DPhiX.view(np.float64).reshape((-1, 1)) DPhiY_vec = self.DPhiY.view(np.float64).reshape((-1, 1)) out_t = self.At - (self.Ax_vec @ DPhiX_vec).ravel() out_t -= (self.Ay_vec @ DPhiY_vec).ravel() out_t *= self.zi2 lhs[:, 0] = out_t # ================================================================== # Hessian products with respect to X # ================================================================== # Hessian products of Renyi entropy # D2_XX Ψ(X, Y)[Hx] = D2g(X)[h(Y), Hx] congr_multi(work2, self.Ux.conj().T, self.Ax, work=work4) scnd_frechet_multi(work5, self.D2x_g, work2, self.Ux_hY_Ux, U=self.Ux, work1=work3, work2=work4, work3=work6) # fmt: skip # D2_XY Ψ(X, Y)[Hy] = Dg(X)[Dh(Y)[Hy]] congr_multi(work1, self.Uy.conj().T, self.Ay, work=work4) np.multiply(work1, self.D1y_h, out=work0) congr_multi(work3, self.UxUy, work0, work=work4) work3 *= self.D1x_g congr_multi(work0, self.Ux, work3, work=work4) work5 += work0 # Hessian product of barrier function # D2_X F(t, X, Y)[Ht, Hx, Hy] = -D2_t F(t, X, Y)[Ht, Hx, Hy] * D_X Ψ(X, Y) # + (D2_XX Ψ(X, Y)[Hx] + D2_XY Ψ(X, Y)[Hy]) / z # + X^-1 Hx X^-1 work5 *= self.zi np.outer(out_t, self.DPhiX, out=work3.reshape((p, -1))) work5 -= work3 congr_multi(work4, self.inv_X, self.Ax, work=work3) work5 += work4 lhs[:, self.idx_X] = work5.reshape((p, -1)).view(np.float64) # ====================================================================== # Hessian products with respect to Y # ====================================================================== # Hessian products of Renyi entropy # D2_YY Ψ(X, Y)[Hy] = D2h(Y)[g(X), Hy] scnd_frechet_multi(work5, self.D2y_h, work1, self.Uy_gX_Uy, U=self.Uy, work1=work3, work2=work4, work3=work6) # fmt: skip # D2_YX Ψ(X, Y)[Hx] = Dh(Y)[Dg(X)[Hx]] work2 *= self.D1x_g congr_multi(work3, self.UxUy.conj().T, work2, work=work4) work3 *= self.D1y_h congr_multi(work0, self.Uy, work3, work=work4) work5 += work0 # Hessian product of barrier function # D2_Y F(t, X, Y)[Ht, Hx, Hy] = -D2_t F(t, X, Y)[Ht, Hx, Hy] * D_Y Ψ(X, Y) # + (D2_YX Ψ(X, Y)[Hx] + D2_YY Ψ(X, Y)[Hy]) / z # + Y^-1 Hy Y^-1 work5 *= self.zi np.outer(out_t, self.DPhiY, out=work1.reshape((p, -1))) work5 -= work1 congr_multi(work1, self.inv_Y, self.Ay, work=work4) work5 += work1 lhs[:, self.idx_Y] = work5.reshape((p, -1)).view(np.float64) # Multiply A (H A') return dense_dot_x(lhs, A.T) def invhess_prod_ip(self, out, H): assert self.grad_updated if not self.hess_aux_updated: self.update_hessprod_aux() if not self.invhess_aux_updated: self.update_invhessprod_aux() (Ht, Hx, Hy) = H # Compute Wx and get compact vectorization Wx = Hx + Ht * self.DPhiX Wx_vec = Wx.view(np.float64).reshape(-1, 1) Wx_cvec = self.F2C_op @ Wx_vec # Compute Wy and get compact vectorization Wy = Hy + Ht * self.DPhiY Wy_vec = Wy.view(np.float64).reshape(-1, 1) Wy_cvec = self.F2C_op @ Wy_vec # Solve for (X, Y) = M \ (Wx, Wy) Wxy_cvec = np.vstack((Wx_cvec, Wy_cvec)) out_XY = cho_solve(self.hess_fact, Wxy_cvec) out_XY = out_XY.reshape(2, -1) out_X = self.F2C_op.T @ out_XY[0] out_X = out_X.view(self.dtype).reshape((self.n, self.n)) out[1][:] = (out_X + out_X.conj().T) * 0.5 out_Y = self.F2C_op.T @ out_XY[1] out_Y = out_Y.view(self.dtype).reshape((self.n, self.n)) out[2][:] = (out_Y + out_Y.conj().T) * 0.5 # Solve for t = z^2 Ht + <DPhi(X, Y), (X, Y)> out_t = self.z2 * Ht out_t += inp(out_X, self.DPhiX) out_t += inp(out_Y, self.DPhiY) out[0][:] = out_t return out def invhess_congr(self, A): assert self.grad_updated if not self.hess_aux_updated: self.update_hessprod_aux() if not self.invhess_aux_updated: self.update_invhessprod_aux() if not self.congr_aux_updated: self.congr_aux(A) # The inverse Hessian product applied on (Ht, Hx, Hy) for the SRE # barrier is # (X, Y) = M \ (Wx, Wy) # t = z^2 Ht + <DPhi(X, Y), (X, Y)> # where (Wx, Wy) = (Hx, Hy) + Ht DPhi(X, Y) and # M = 1/z [ D2xxPhi D2xyPhi ] + [ X^1 ⊗ X^-1 ] # [ D2yxPhi D2yyPhi ] [ Y^1 ⊗ Y^-1 ] # Compute (Wx, Wy) np.outer(self.DPhi_cvec, self.At, out=self.work) self.work += self.Axy_cvec.T # Solve for (X, Y) = M \ (Wx, Wy) out_xy = cho_solve(self.hess_fact, self.work) # Solve for t = z^2 Ht + <DPhi(X, Y), (X, Y)> out_t = self.z2 * self.At.reshape(-1, 1) + out_xy.T @ self.DPhi_cvec # Multiply A (H A') return x_dot_dense(self.Axy_cvec, out_xy) + np.outer(self.At, out_t) def third_dir_deriv_axpy(self, out, H, a=True): assert self.grad_updated if not self.hess_aux_updated: self.update_hessprod_aux() (Ht, Hx, Hy) = H chi = Ht[0, 0] - inp(self.DPhiX, Hx) - inp(self.DPhiY, Hy) chi2 = chi * chi self.zi3 = self.zi2 * self.zi UHxU = self.Ux.conj().T @ Hx @ self.Ux UHyU = self.Uy.conj().T @ Hy @ self.Uy # Hessian product of Renyi entropy # D2_XX Ψ(X, Y)[Hx] = D2g(X)[h(Y), Hx] D2PhiXXH = scnd_frechet(self.D2x_g, self.Ux_hY_Ux, UHxU, U=self.Ux) # D2_XY Ψ(X, Y)[Hy] = Dg(X)[Dh(Y)[Hy]] work = self.UxUy @ (self.D1y_h * UHyU) @ self.UxUy.conj().T D2PhiXYH = self.Ux @ (self.D1x_g * work) @ self.Ux.conj().T # D2_YX Ψ(X, Y)[Hx] = Dh(Y)[Dg(X)[Hx]] work = self.UxUy.conj().T @ (self.D1x_g * UHxU) @ self.UxUy D2PhiYXH = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T # D2_YY Ψ(X, Y)[Hy] = D2h(Y)[g(X), Hy] D2PhiYYH = scnd_frechet(self.D2y_h, self.Uy_gX_Uy, UHyU, U=self.Uy) D2PhiXHH = inp(Hx, D2PhiXXH + D2PhiXYH) D2PhiYHH = inp(Hy, D2PhiYXH + D2PhiYYH) # Trace noncommutative perspective third order derivatives # Second derivatives of D_X Ψ(X, Y) D3PhiXXX = thrd_frechet(self.Dx, self.D2x_g, self.d3g(self.Dx), self.Ux, self.Ux_hY_Ux, UHxU) # fmt: skip work = self.UxUy @ (self.D1y_h * UHyU) @ self.UxUy.conj().T D3PhiXXY = scnd_frechet(self.D2x_g, UHxU, work, U=self.Ux) D3PhiXYX = D3PhiXXY work = scnd_frechet(self.D2y_h, UHyU, UHyU, U=self.UxUy) D3PhiXYY = self.Ux @ (self.D1x_g * work) @ self.Ux.conj().T # Second derivatives of D_Y Ψ(X, Y) D3PhiYYY = thrd_frechet(self.Dy, self.D2y_h, self.d3h(self.Dy), self.Uy, self.Uy_gX_Uy, UHyU) # fmt: skip work = self.UxUy.conj().T @ (self.D1x_g * UHxU) @ self.UxUy D3PhiYYX = scnd_frechet(self.D2y_h, UHyU, work, U=self.Uy) D3PhiYXY = D3PhiYYX work = scnd_frechet(self.D2x_g, UHxU, UHxU, U=self.UxUy.conj().T) D3PhiYXX = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T # Third derivatives of barrier dder3_t = -2 * self.zi3 * chi2 - self.zi2 * (D2PhiXHH + D2PhiYHH) dder3_X = -dder3_t * self.DPhiX dder3_X -= 2 * self.zi2 * chi * (D2PhiXXH + D2PhiXYH) dder3_X += self.zi * (D3PhiXXX + D3PhiXXY + D3PhiXYX + D3PhiXYY) dder3_X -= 2 * self.inv_X @ Hx @ self.inv_X @ Hx @ self.inv_X dder3_X = (dder3_X + dder3_X.conj().T) * 0.5 dder3_Y = -dder3_t * self.DPhiY dder3_Y -= 2 * self.zi2 * chi * (D2PhiYXH + D2PhiYYH) dder3_Y += self.zi * (D3PhiYYY + D3PhiYYX + D3PhiYXY + D3PhiYXX) dder3_Y -= 2 * self.inv_Y @ Hy @ self.inv_Y @ Hy @ self.inv_Y dder3_Y = (dder3_Y + dder3_Y.conj().T) * 0.5 out[0][:] += dder3_t * a out[1][:] += dder3_X * a out[2][:] += dder3_Y * a return out # ======================================================================== # Auxilliary functions # ======================================================================== def congr_aux(self, A): assert not self.congr_aux_updated iscomplex = self.iscomplex # Get slices and views of A matrix to be used in congruence computations if sp.sparse.issparse(A): A = A.tocsr() self.Ax_vec = A[:, self.idx_X] self.Ay_vec = A[:, self.idx_Y] Ax_cvec = (self.F2C_op @ self.Ax_vec.T).T Ay_cvec = (self.F2C_op @ self.Ay_vec.T).T if sp.sparse.issparse(A): self.Axy_cvec = sp.sparse.hstack((Ax_cvec, Ay_cvec), format="coo") else: self.Axy_cvec = np.hstack((Ax_cvec, Ay_cvec)) if sp.sparse.issparse(A): A = A.toarray() Ax_dense = np.ascontiguousarray(A[:, self.idx_X]) Ay_dense = np.ascontiguousarray(A[:, self.idx_Y]) self.At = A[:, 0] self.Ax = np.array([vec_to_mat(Ax_k, iscomplex) for Ax_k in Ax_dense]) self.Ay = np.array([vec_to_mat(Ay_k, iscomplex) for Ay_k in Ay_dense]) # Preallocate matrices we will need when performing these congruences self.work = np.empty_like(self.Axy_cvec.T) self.work0 = np.empty_like(self.Ax) self.work1 = np.empty_like(self.Ax) self.work2 = np.empty_like(self.Ax) self.work3 = np.empty_like(self.Ax) self.work4 = np.empty_like(self.Ax) self.work5 = np.empty_like(self.Ax) self.work6 = np.empty((self.Ax.shape[::-1]), dtype=self.dtype) self.congr_aux_updated = True def update_hessprod_aux(self): assert not self.hess_aux_updated assert self.grad_updated self.D2x_g = D2_f(self.Dx, self.D1x_g, self.d2g(self.Dx)) self.D2y_h = D2_f(self.Dy, self.D1y_h, self.d2h(self.Dy)) # Preparing other required variables self.UxUy = self.Ux.conj().T @ self.Uy self.zi2 = self.zi * self.zi self.hess_aux_updated = True def update_invhessprod_aux(self): assert not self.invhess_aux_updated assert self.grad_updated assert self.hess_aux_updated if not self.invhess_aux_aux_updated: self.update_invhessprod_aux_aux() # Precompute and factorize the matrix # M = 1/z [ D2xxPhi D2xyPhi ] + [ X^1 ⊗ X^-1 ] # [ D2yxPhi D2yyPhi ] [ Y^1 ⊗ Y^-1 ] self.z2 = self.z * self.z work11, work12 = self.work11, self.work12 work13, work14, work15 = self.work13, self.work14, self.work15 # Precompute compact vectorizations of derivatives DPhiX_cvec = self.DPhiX.view(np.float64).reshape(-1, 1) DPhiX_cvec = self.F2C_op @ DPhiX_cvec DPhiY_cvec = self.DPhiY.view(np.float64).reshape(-1, 1) DPhiY_cvec = self.F2C_op @ DPhiY_cvec self.DPhi_cvec = np.vstack((DPhiX_cvec, DPhiY_cvec)) # ====================================================================== # Construct XX block of Hessian, i.e., (D2xxPhi + X^-1 ⊗ X^-1) # ====================================================================== # D2_XX Ψ(X, Y)[Hx] = D2g(X)[h(Y), Hx] congr_multi(work14, self.Ux.conj().T, self.E, work=work13) scnd_frechet_multi(work11, self.D2x_g, work14, self.Ux_hY_Ux, U=self.Ux, work1=work12, work2=work13, work3=work15) # fmt: skip work11 *= self.zi # X^-1 Eij X^-1 congr_multi(work12, self.inv_X, self.E, work=work13) work12 += work11 # Vectorize matrices as compact vectors to get square matrix work = work12.view(np.float64).reshape((self.vn, -1)) Hxx = x_dot_dense(self.F2C_op, work.T) # ====================================================================== # Construct YY block of Hessian, i.e., (D2yyPhi + Y^-1 ⊗ Y^-1) # ====================================================================== # D2_YY Ψ(X, Y)[Hy] = D2h(Y)[g(X), Hy] congr_multi(work14, self.Uy.conj().T, self.E, work=work13) scnd_frechet_multi(work11, self.D2y_h, work14, self.Uy_gX_Uy, U=self.Uy, work1=work12, work2=work13, work3=work15) # fmt: skip work11 *= self.zi # Y^1 Eij Y^-1 congr_multi(work12, self.inv_Y, self.E, work=work13) work12 += work11 # Vectorize matrices as compact vectors to get square matrix work = work12.view(np.float64).reshape((self.vn, -1)) Hyy = x_dot_dense(self.F2C_op, work.T) # ====================================================================== # Construct XY block of Hessian, i.e., D2xyPhi # ====================================================================== # D2_XY Ψ(X, Y)[Hy] = Dg(X)[Dh(Y)[Hy]] work14 *= self.D1y_h congr_multi(work12, self.UxUy, work14, work=work13) work12 *= self.D1x_g congr_multi(work14, self.Ux, work12, work=work13) work14 *= self.zi # Vectorize matrices as compact vectors to get square matrix work = work14.view(np.float64).reshape((self.vn, -1)) Hxy = x_dot_dense(self.F2C_op, work.T) # Construct Hessian and factorize Hxx = (Hxx + Hxx.conj().T) * 0.5 Hyy = (Hyy + Hyy.conj().T) * 0.5 self.hess[: self.vn, : self.vn] = Hxx self.hess[self.vn :, self.vn :] = Hyy self.hess[self.vn :, : self.vn] = Hxy.T self.hess[: self.vn, self.vn :] = Hxy self.hess_fact = cho_fact(self.hess) self.invhess_aux_updated = True return def update_invhessprod_aux_aux(self): assert not self.invhess_aux_aux_updated self.precompute_computational_basis() self.hess = np.empty((2 * self.vn, 2 * self.vn)) self.work11 = np.empty((self.vn, self.n, self.n), dtype=self.dtype) self.work12 = np.empty((self.vn, self.n, self.n), dtype=self.dtype) self.work13 = np.empty((self.vn, self.n, self.n), dtype=self.dtype) self.work14 = np.empty((self.vn, self.n, self.n), dtype=self.dtype) self.work15 = np.empty((self.n, self.n, self.vn), dtype=self.dtype) self.invhess_aux_aux_updated = True def get_central_ray(self): # Solve a 3-dimensional nonlinear system of equations to get the central # point of the barrier function n, alpha = self.n, self.alpha if 0 <= alpha and alpha <= 1: (t, x, y) = (1.0 + n * self.g(1.0), 1.0, 1.0) elif 1 <= alpha: t = np.sqrt(n) * (1 + (1 - alpha) * 0.2976) y = np.sqrt(1 - (1 - alpha) * (t * t - 1) / n) x = np.power(np.power(y, 1 - alpha) * (t - 1 / t) / n, 1 / alpha) elif -1 <= alpha and alpha <= 0: t = np.sqrt(n) * (1 + alpha * 0.2976) x = np.sqrt(1 - alpha * (t * t - 1) / n) y = np.power(np.power(x, alpha) * (t - 1 / t) / n, 1 / (1 - alpha)) for _ in range(20): # Precompute some useful things z = t - n * self.g(x) * (y ** (1 - alpha)) zi = 1 / z zi2 = zi * zi dx = self.dg(x) * (y ** (1 - alpha)) dy = self.g(x) * (1 - alpha) * (y ** (-alpha)) d2dx2 = self.d2g(x) * (y ** (1 - alpha)) d2dy2 = self.g(x) * (1 - alpha) * (-alpha) * (y ** (-alpha - 1)) d2dxdy = self.dg(x) * (1 - alpha) * (y ** (-alpha)) # Get gradient g = np.array([t - zi, n * x + n * dx * zi - n / x, n * y + n * dy * zi - n / y]) # fmt: skip # Get Hessian (Htt, Htx, Hty) = (zi2, -n * zi2 * dx, -n * zi2 * dy) Hxx = n * n * zi2 * dx * dx + n * zi * d2dx2 + n / x / x Hyy = n * n * zi2 * dy * dy + n * zi * d2dy2 + n / y / y Hxy = n * n * zi2 * dx * dy + n * zi * d2dxdy H = np.array([[Htt + 1, Htx, Hty], [Htx, Hxx + n, Hxy], [Hty, Hxy, Hyy + n]]) # fmt: skip # Perform Newton step delta = -np.linalg.solve(H, g) decrement = -np.dot(delta, g) # Backtracking line search step, step_success = 1.0, False for __ in range(10): t1 = t + step * delta[0] x1 = x + step * delta[1] y1 = y + step * delta[2] if x1 > 0 and y1 > 0 and t1 > n * self.g(x1) * (y1 ** (1 - alpha)): step_success = True break step /= 2 if not step_success: break (t, x, y) = (t1, x1, y1) # Exit if decrement is small, i.e., near optimality if decrement / 2.0 <= 1e-12: break return (t, x, y)