# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
import scipy as sp
from qics._utils.gradient import (
D1_f,
D2_f,
scnd_frechet,
scnd_frechet_multi,
thrd_frechet,
)
from qics._utils.linalg import (
cho_fact,
cho_solve,
congr_multi,
dense_dot_x,
inp,
x_dot_dense,
)
from qics.cones.base import Cone
from qics.vectorize import get_full_to_compact_op, vec_to_mat
[docs]
class SandRenyiEntr(Cone):
r"""A class representing the epigraph of the (homogenized) sandwiched Renyi entropy,
i.e., for some :math:`\alpha\in[1/2, 1)`,
.. math::
\mathcal{SRE}_{n} = \text{cl}\{ (t,u,X,Y) \in \mathbb{R} \times \mathbb{R}_{++}
\times \mathbb{H}^n_{++} \times \mathbb{H}^n_{++}
: t \geq u \hat{D}_\alpha(u^{-1}X \| u^{-1}Y) \},
where
.. math::
\hat{D}_\alpha(X \| Y) = \frac{1}{\alpha-1} \log(\text{tr}[
( Y^{\frac{1-\alpha}{2\alpha}} X Y^{\frac{1-\alpha}{2\alpha}} )^\alpha ]),
is the sandwiched :math:`\alpha`-Renyi divergence.
Parameters
----------
n : :obj:`int`
Dimension of the matrices :math:`X` and :math:`Y`.
alpha : :obj:`float`
The exponent :math:`\alpha` used to parameterize the sandwiched Renyi entropy.
iscomplex : :obj:`bool`
Whether the matrices :math:`X` and :math:`Y` are defined over
:math:`\mathbb{H}^n` (``True``), or restricted to
:math:`\mathbb{S}^n` (``False``). The default is ``False``.
See also
--------
RenyiEntr : Renyi entropy
QuasiEntr : Trace function used to define the sandwiched Renyi entropy
QuantRelEntr : Quantum relative entropy
"""
def __init__(self, n, alpha, iscomplex=False):
assert 0.5 <= alpha and alpha < 1
self.n = n
self.alpha = alpha
self.iscomplex = iscomplex
self.nu = 2 + 2 * n # Barrier parameter
if iscomplex:
self.vn = n * n
self.dim = [1, 1, 2 * n * n, 2 * n * n]
self.type = ["r", "r", "h", "h"]
self.dtype = np.complex128
else:
self.vn = n * (n + 1) // 2
self.dim = [1, 1, n * n, n * n]
self.type = ["r", "r", "s", "s"]
self.dtype = np.float64
self.idx_X = slice(2, 2 + self.dim[2])
self.idx_Y = slice(2 + self.dim[2], sum(self.dim))
# Get function handles for g(x)=x^α
# and their first, second and third derivatives
a = alpha
self.g = lambda x: np.power(x, a)
self.dg = lambda x: np.power(x, a - 1) * a
self.d2g = lambda x: np.power(x, a - 2) * (a * (a - 1))
self.d3g = lambda x: np.power(x, a - 3) * (a * (a - 1) * (a - 2))
# Get function handles for h(x)=x^β where β=(1-α)/α
# and their first, second and third derivatives
b = (1 - alpha) / alpha
self.h = lambda x: np.power(x, b)
self.dh = lambda x: np.power(x, b - 1) * b
self.d2h = lambda x: np.power(x, b - 2) * (b * (b - 1))
self.d3h = lambda x: np.power(x, b - 3) * (b * (b - 1) * (b - 2))
# Get sparse operator to convert from full to compact vectorizations
self.F2C_op = get_full_to_compact_op(n, iscomplex)
# Update flags
self.feas_updated = False
self.grad_updated = False
self.hess_aux_updated = False
self.invhess_aux_updated = False
self.invhess_aux_aux_updated = False
self.dder3_aux_updated = False
self.congr_aux_updated = False
return
def get_iscomplex(self):
return self.iscomplex
def get_init_point(self, out):
(t0, u0, x0, y0) = self.get_central_ray()
point = [
np.array([[t0]]),
np.array([[u0]]),
np.eye(self.n, dtype=self.dtype) * x0,
np.eye(self.n, dtype=self.dtype) * y0,
]
self.set_point(point, point)
out[0][:] = point[0]
out[1][:] = point[1]
out[2][:] = point[2]
out[3][:] = point[3]
return out
def get_feas(self):
if self.feas_updated:
return self.feas
self.feas_updated = True
(self.t, self.u, self.X, self.Y) = self.primal
# Check that u, X, and Y are positive
self.Dx, self.Ux = np.linalg.eigh(self.X)
self.Dy, self.Uy = np.linalg.eigh(self.Y)
if self.u <= 0 or any(self.Dx <= 0) or any(self.Dy <= 0):
self.feas = False
return self.feas
# Construct (Y^(β/2) X Y^(β/2)) and (X^1/2 Y^β X^1/2)
# and double check they are also PSD (in case of numerical errors)
rt2_Dx = np.sqrt(self.Dx)
rt4_X = self.Ux * np.sqrt(rt2_Dx)
irt4_X = self.Ux / np.sqrt(rt2_Dx)
self.rt2_X = rt4_X @ rt4_X.conj().T
self.irt2_X = irt4_X @ irt4_X.conj().T
beta = (1 - self.alpha) / self.alpha
beta2_Dy = np.power(self.Dy, beta / 2)
beta4_Y = self.Uy * np.sqrt(beta2_Dy)
ibeta4_Y = self.Uy / np.sqrt(beta2_Dy)
self.beta2_Y = beta4_Y @ beta4_Y.conj().T
self.ibeta2_Y = ibeta4_Y @ ibeta4_Y.conj().T
YX_2 = self.beta2_Y @ self.rt2_X
YXY = YX_2 @ YX_2.conj().T
XYX = YX_2.conj().T @ YX_2
self.Dyxy, self.Uyxy = np.linalg.eigh(YXY)
self.Dxyx, self.Uxyx = np.linalg.eigh(XYX)
if any(self.Dxyx <= 0) or any(self.Dyxy <= 0):
self.feas = False
return self.feas
# Check that t > log( tr[ ( Y^(β/2) X Y^(β/2) )^α ] ) / (α - 1)
self.Tr = np.sum(self.g(self.Dyxy))
self.z = (self.t - self.u * np.log(self.Tr / self.u) / (self.alpha - 1))[0, 0]
self.feas = self.z > 0
return self.feas
def get_val(self):
assert self.feas_updated
func = -np.log(self.z)
func -= np.sum(np.log(self.Dx)) + np.sum(np.log(self.Dy)) + np.log(self.u[0, 0])
return func
def update_grad(self):
assert self.feas_updated
assert not self.grad_updated
# Precompute useful expressions
self.D1y_h = D1_f(self.Dy, self.h(self.Dy), self.dh(self.Dy))
dg_Dyxy = self.dg(self.Dyxy)
self.dg_YXY = (self.Uyxy * dg_Dyxy) @ self.Uyxy.conj().T
dg_Dxyx = self.dg(self.Dxyx)
self.dg_XYX = (self.Uxyx * dg_Dxyx) @ self.Uxyx.conj().T
self.rtX_Uy = self.rt2_X @ self.Uy
self.UX_dgXYX_XU = self.rtX_Uy.conj().T @ self.dg_XYX @ self.rtX_Uy
# Compute gradients of trace function
# D_X Ψ(X, Y) = Y^β/2 g'( Y^β/2 X Y^β/2 ) Y^β/2
self.DTrX = self.beta2_Y @ self.dg_YXY @ self.beta2_Y
self.DTrX = (self.DTrX + self.DTrX.conj().T) * 0.5
# D_Y Ψ(X, Y) = Uy ( h^[1](Dy) .* [Uy' X^½ g'( X^½ Y^β X^½ ) X^½ Uy] ) Uy'
self.DTrY = self.Uy @ (self.D1y_h * self.UX_dgXYX_XU) @ self.Uy.conj().T
self.DTrY = (self.DTrY + self.DTrY.conj().T) * 0.5
# Compute gradients of sandwiched Renyi entropy
# D_u S(u, X, Y) = (log(Ψ / u) - 1) / (α - 1)
self.DPhiu = (np.log(self.Tr / self.u) - 1) / (self.alpha - 1)
# D_X S(u, X, Y) = (D_X Ψ(X, Y) / Ψ) / (α - 1)
self.DPhiX = (self.u * self.DTrX / self.Tr) / (self.alpha - 1)
# D_Y S(u, X, Y) = (D_Y Ψ(X, Y) / Ψ) / (α - 1)
self.DPhiY = (self.u * self.DTrY / self.Tr) / (self.alpha - 1)
# Compute X^-1 and Y^-1
inv_Dx = np.reciprocal(self.Dx)
inv_X_rt2 = self.Ux * np.sqrt(inv_Dx)
self.inv_X = inv_X_rt2 @ inv_X_rt2.conj().T
inv_Dy = np.reciprocal(self.Dy)
inv_Y_rt2 = self.Uy * np.sqrt(inv_Dy)
self.inv_Y = inv_Y_rt2 @ inv_Y_rt2.conj().T
# Compute gradient of barrier function
self.zi = np.reciprocal(self.z)
self.grad = [
-self.zi,
self.zi * self.DPhiu - 1 / self.u,
self.zi * self.DPhiX - self.inv_X,
self.zi * self.DPhiY - self.inv_Y,
]
self.grad_updated = True
def hess_prod_ip(self, out, H):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
(Ht, Hu, Hx, Hy) = H
UHyU = self.Uy.conj().T @ Hy @ self.Uy
UYHxYU = self.b2Y_Uyxy.conj().T @ Hx @ self.b2Y_Uyxy
# Hessian product of trace function
# D2_XX Ψ(X, Y)[Hx] = Y^β/2 D(g')(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^β/2
D2TrXXH = self.b2Y_Uyxy @ (self.D1yxy_dg * UYHxYU) @ self.b2Y_Uyxy.conj().T
# D2_XY Ψ(X, Y)[Hy] = α * Y^β/2 Dg(Y^β/2 X Y^β/2)[Y^-β/2 Dh(Y)[Hy] Y^-β/2] Y^β/2
work = self.alpha * self.D1y_h * UHyU
work = self.Uy_ib2Y_Uyxy.conj().T @ work @ self.Uy_ib2Y_Uyxy
D2TrXYH = self.b2Y_Uyxy @ (self.D1yxy_g * work) @ self.b2Y_Uyxy.conj().T
# D2_YX Ψ(X, Y)[Hx] = α * Dh(Y)[Y^-β/2 Dg(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^-β/2]
work = self.alpha * self.D1yxy_g * UYHxYU
work = self.Uy_ib2Y_Uyxy @ work @ self.Uy_ib2Y_Uyxy.conj().T
D2TrYXH = self.Uy @ (work * self.D1y_h) @ self.Uy.conj().T
# D2_YY Ψ(X, Y)[Hy] = D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
# + Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
work = self.Uy_rtX_Uxyx.conj().T @ (self.D1y_h * UHyU) @ self.Uy_rtX_Uxyx
work = self.Uy_rtX_Uxyx @ (self.D1xyx_dg * work) @ self.Uy_rtX_Uxyx.conj().T
D2TrYYH = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
D2TrYYH += scnd_frechet(self.D2y_h, self.UX_dgXYX_XU, UHyU, U=self.Uy)
D2TrXH = D2TrXXH + D2TrXYH
D2TrYH = D2TrYXH + D2TrYYH
# Hessian product of sandwiched Renyi entropy
rho = Hu - ((inp(self.DTrX, Hx) + inp(self.DTrY, Hy)) * self.u) / self.Tr
# D2_u S(X, Y)[(Hu, Hx, Hy)] = (DΨ(X,Y)[(Hx,Hy)]/Ψ - Hu/u) / (α-1)
D2PhiuH = -rho / self.u / (self.alpha - 1)
# D2_X S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_X Ψ + u/Ψ D2_X Ψ(X,Y)[(Hx,Hy)]) / (α-1)
D2PhiXH = (self.DTrX * rho + self.u * D2TrXH) / self.Tr / (self.alpha - 1)
# D2_Y S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_Y Ψ + u/Ψ D2_Y Ψ(X,Y)[(Hx,Hy)]) / (α-1)
D2PhiYH = (self.DTrY * rho + self.u * D2TrYH) / self.Tr / (self.alpha - 1)
# ======================================================================
# Hessian products with respect to t
# ======================================================================
# D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = (Ht - D_u S(u, X, Y)[Hu] - D_X S(u, X, Y)[Hx] - D_Y S(u, X, Y)[Hy]) / z^2
out_t = Ht - self.DPhiu * Hu - inp(self.DPhiX, Hx) - inp(self.DPhiY, Hy)
out_t *= self.zi2
out[0][:] = out_t
# ======================================================================
# Hessian products with respect to u
# ======================================================================
# D2_u F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_u S(u, X, Y)
# + D2_u Ψ(X, Y)[(Hu, Hx, Hy)] / z + Hu / u^2
out_u = -out_t * self.DPhiu + self.zi * D2PhiuH + Hu / self.u / self.u
out[1][:] = out_u
# ======================================================================
# Hessian products with respect to X
# ======================================================================
# D2_X F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_X S(u, X, Y)
# + D2_X Ψ(X, Y)[(Hu, Hx, Hy)] / z + X^-1 Hx X^-1
out_X = -out_t * self.DPhiX + self.zi * D2PhiXH + self.inv_X @ Hx @ self.inv_X
out_X = (out_X + out_X.conj().T) * 0.5
out[2][:] = out_X
# ==================================================================
# Hessian products with respect to Y
# ==================================================================
# D2_Y F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_Y S(u, X, Y)
# + D2_Y Ψ(X, Y)[(Hu, Hx, Hy)] / z + Y^-1 Hy Y^-1
out_Y = -out_t * self.DPhiY + self.zi * D2PhiYH + self.inv_Y @ Hy @ self.inv_Y
out_Y = (out_Y + out_Y.conj().T) * 0.5
out[3][:] = out_Y
return out
def hess_congr(self, A):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.congr_aux_updated:
self.congr_aux(A)
p = A.shape[0]
lhs = np.empty((p, sum(self.dim)))
work0, work1 = self.work0, self.work1
work2, work3 = self.work2, self.work3
work4, work5, work6 = self.work4, self.work5, self.work6
DTrX_vec = self.DTrX.view(np.float64).reshape((-1, 1))
DTrY_vec = self.DTrY.view(np.float64).reshape((-1, 1))
# ======================================================================
# Hessian products with respect to t
# ======================================================================
# D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = (Ht - D_u S(u, X, Y)[Hu] - D_X S(u, X, Y)[Hx] - D_Y S(u, X, Y)[Hy]) / z^2
DPhiX_vec = self.DPhiX.view(np.float64).reshape((-1, 1))
DPhiY_vec = self.DPhiY.view(np.float64).reshape((-1, 1))
out_t = self.At - (self.Au * self.DPhiu).ravel()
out_t -= (self.Ax_vec @ DPhiX_vec + self.Ay_vec @ DPhiY_vec).ravel()
out_t *= self.zi2
lhs[:, 0] = out_t
# ======================================================================
# Hessian products with respect to u
# ======================================================================
# Hessian product of sandwiched Renyi entropy
# D2_u S(X, Y)[(Hu, Hx, Hy)] = (DΨ(X,Y)[(Hx,Hy)]/Ψ - Hu/u) / (α-1)
rho = self.Ax_vec @ DTrX_vec + self.Ay_vec @ DTrY_vec
rho *= -self.u / self.Tr
rho += self.Au
D2PhiuH = -rho / (self.u[0, 0] * (self.alpha - 1))
# Hessian product of barrier function
# D2_u F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_u S(u, X, Y)
# + D2_u Ψ(X, Y)[(Hu, Hx, Hy)] / z + Hu / u^2
out_u = -out_t * self.DPhiu[0, 0]
out_u += self.zi * D2PhiuH.ravel()
out_u += (self.Au / (self.u * self.u)).ravel()
lhs[:, 1] = out_u
# ======================================================================
# Hessian products with respect to Y
# ======================================================================
# Hessian products of trace function
# D2_YY Ψ(X, Y)[Hy] = D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
# + Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
# Compute first term i.e., D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
congr_multi(work2, self.Uy.conj().T, self.Ay, work=work4)
np.multiply(work2, self.D1y_h, out=work1)
congr_multi(work5, self.Uy_rtX_Uxyx.conj().T, work1, work=work4)
work5 *= self.D1xyx_dg
congr_multi(work1, self.Uy_rtX_Uxyx, work5, work=work4)
work1 *= self.D1y_h
congr_multi(work5, self.Uy, work1, work=work4)
# Compute second term i.e., Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
scnd_frechet_multi(work1, self.D2y_h, work2, self.UX_dgXYX_XU, U=self.Uy,
work1=work3, work2=work4, work3=work6) # fmt: skip
work5 += work1
# D2_YX Ψ(X, Y)[Hx] = α * Dh(Y)[Y^-β/2 Dg(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^-β/2]
congr_multi(work3, self.b2Y_Uyxy.conj().T, self.Ax, work=work4)
np.multiply(work3, self.D1yxy_g, out=work0)
congr_multi(work1, self.Uy_ib2Y_Uyxy, work0, work=work4)
work1 *= self.alpha * self.D1y_h
congr_multi(work0, self.Uy, work1, work=work4)
work5 += work0
# Hessian products of sandwiched Renyi entropy
# D2_Y S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_Y Ψ + u/Ψ D2_Y Ψ(X,Y)[(Hx,Hy)]) / (α-1)
work5 *= self.u
np.outer(rho, self.DTrY, out=work0.reshape((p, -1)))
work5 += work0
work5 /= self.Tr * (self.alpha - 1)
# Hessian product of barrier function
# D2_Y F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_Y S(u, X, Y)
# + D2_Y Ψ(X, Y)[(Hu, Hx, Hy)] / z + Y^-1 Hy Y^-1
work5 *= self.zi
np.outer(out_t, self.DPhiY, out=work1.reshape((p, -1)))
work5 -= work1
congr_multi(work1, self.inv_Y, self.Ay, work=work4)
work5 += work1
lhs[:, self.idx_Y] = work5.reshape((p, -1)).view(np.float64)
# ==================================================================
# Hessian products with respect to X
# ==================================================================
# Hessian products of trace function
# D2_XY Ψ(X, Y)[Hy] = α * Y^β/2 Dg(Y^β/2 X Y^β/2)[Y^-β/2 Dh(Y)[Hy] Y^-β/2] Y^β/2
work2 *= self.D1y_h
congr_multi(work0, self.Uy_ib2Y_Uyxy.conj().T, work2, work=work4)
work0 *= self.alpha * self.D1yxy_g
congr_multi(work5, self.b2Y_Uyxy, work0, work=work4)
# D2_XX Ψ(X, Y)[Hx] = Y^β/2 D(g')(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^β/2
work3 *= self.D1yxy_dg
congr_multi(work1, self.b2Y_Uyxy, work3, work=work4)
work5 += work1
# Hessian products of sandwiched Renyi entropy
# D2_X S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_X Ψ + u/Ψ D2_X Ψ(X,Y)[(Hx,Hy)]) / (α-1)
work5 *= self.u
np.outer(rho, self.DTrX, out=work0.reshape((p, -1)))
work5 += work0
work5 /= self.Tr * (self.alpha - 1)
# Hessian product of barrier function
# D2_X F(t, u, X, Y)[Ht, Hu, Hx, Hy]
# = -D2_t F(t, u, X, Y)[Ht, Hu, Hx, Hy] * D_X S(u, X, Y)
# + D2_X Ψ(X, Y)[(Hu, Hx, Hy)] / z + X^-1 Hx X^-1
work5 *= self.zi
np.outer(out_t, self.DPhiX, out=work1.reshape((p, -1)))
work5 -= work1
congr_multi(work1, self.inv_X, self.Ax, work=work3)
work5 += work1
lhs[:, self.idx_X] = work5.reshape((p, -1)).view(np.float64)
# Multiply A (H A')
return dense_dot_x(lhs, A.T)
def invhess_prod_ip(self, out, H):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.invhess_aux_updated:
self.update_invhessprod_aux()
(Ht, Hu, Hx, Hy) = H
# Compute Wu
Wu = Hu + Ht * self.DPhiu
# Compute Wx and get compact vectorization
Wx = Hx + Ht * self.DPhiX
Wx_vec = Wx.view(np.float64).reshape(-1, 1)
Wx_cvec = self.F2C_op @ Wx_vec
# Compute Wy and get compact vectorization
Wy = Hy + Ht * self.DPhiY
Wy_vec = Wy.view(np.float64).reshape(-1, 1)
Wy_cvec = self.F2C_op @ Wy_vec
# Solve for (u, X, Y) = M \ (Wu, Wx, Wy)
Wuxy_cvec = np.vstack((Wu, Wx_cvec, Wy_cvec))
out_uXY = cho_solve(self.hess_fact, Wuxy_cvec)
out_u = out_uXY[0]
out_XY = out_uXY[1:].reshape(2, -1)
out[1][:] = out_u
out_X = self.F2C_op.T @ out_XY[0]
out_X = out_X.view(self.dtype).reshape((self.n, self.n))
out[2][:] = (out_X + out_X.conj().T) * 0.5
out_Y = self.F2C_op.T @ out_XY[1]
out_Y = out_Y.view(self.dtype).reshape((self.n, self.n))
out[3][:] = (out_Y + out_Y.conj().T) * 0.5
# Solve for t = z^2 Ht + <DPhi(u, X, Y), (u, X, Y)>
out_t = self.z2 * Ht + out_u * self.DPhiu
out_t += inp(out_X, self.DPhiX)
out_t += inp(out_Y, self.DPhiY)
out[0][:] = out_t
return out
def invhess_congr(self, A):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.invhess_aux_updated:
self.update_invhessprod_aux()
if not self.congr_aux_updated:
self.congr_aux(A)
# The inverse Hessian product applied on (Ht, Hx, Hy) for the SRE
# barrier is
# (u, X, Y) = M \ (Wu, Wx, Wy)
# t = z^2 Ht + <DPhi(u, X, Y), (u, X, Y)>
# where (Wu, Wx, Wy) = (Hu, Hx, Hy) + Ht DPhi(u, X, Y) and
# M = 1/z [ D2uuPhi D2uxPhi D2uyPhi ] + [ 1 / u^2 ]
# [ D2uxPhi D2xxPhi D2xyPhi ] + [ X^1 ⊗ X^-1 ]
# [ D2uyPhi D2yxPhi D2yyPhi ] [ Y^1 ⊗ Y^-1 ]
# Compute (Wu, Wx, Wy)
np.outer(self.DPhi_cvec, self.At, out=self.work)
self.work += self.Auxy_cvec.T
# Solve for (u, X, Y) = M \ (Wu, Wx, Wy)
out_uxy = cho_solve(self.hess_fact, self.work)
# Solve for t = z^2 Ht + <DPhi(u, X, Y), (u, X, Y)>
out_t = self.z2 * self.At.reshape(-1, 1) + out_uxy.T @ self.DPhi_cvec
# Multiply A (H A')
return x_dot_dense(self.Auxy_cvec, out_uxy) + np.outer(self.At, out_t)
def third_dir_deriv_axpy(self, out, H, a=True):
assert self.grad_updated
if not self.hess_aux_updated:
self.update_hessprod_aux()
if not self.dder3_aux_updated:
self.update_dder3_aux()
(Ht, Hu, Hx, Hy) = H
UHyU = self.Uy.conj().T @ Hy @ self.Uy
UYHxYU = self.b2Y_Uyxy.conj().T @ Hx @ self.b2Y_Uyxy
# First derivatives
DTrXH = inp(Hx, self.DTrX)
DTrYH = inp(Hy, self.DTrY)
DTrH = DTrXH + DTrYH
# Hessian product of trace function
# D2_XX Ψ(X, Y)[Hx] = Y^β/2 D(g')(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^β/2
D2TrXXH = self.b2Y_Uyxy @ (self.D1yxy_dg * UYHxYU) @ self.b2Y_Uyxy.conj().T
# D2_XY Ψ(X, Y)[Hy] = α * Y^β/2 Dg(Y^β/2 X Y^β/2)[Y^-β/2 Dh(Y)[Hy] Y^-β/2] Y^β/2
work = self.alpha * self.D1y_h * UHyU
work = self.Uy_ib2Y_Uyxy.conj().T @ work @ self.Uy_ib2Y_Uyxy
D2TrXYH = self.b2Y_Uyxy @ (self.D1yxy_g * work) @ self.b2Y_Uyxy.conj().T
# D2_YX Ψ(X, Y)[Hx] = α * Dh(Y)[Y^-β/2 Dg(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^-β/2]
work = self.alpha * self.D1yxy_g * UYHxYU
work = self.Uy_ib2Y_Uyxy @ work @ self.Uy_ib2Y_Uyxy.conj().T
D2TrYXH = self.Uy @ (work * self.D1y_h) @ self.Uy.conj().T
# D2_YY Ψ(X, Y)[Hy] = D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
# + Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
work = self.Uy_rtX_Uxyx.conj().T @ (self.D1y_h * UHyU) @ self.Uy_rtX_Uxyx
work = self.Uy_rtX_Uxyx @ (self.D1xyx_dg * work) @ self.Uy_rtX_Uxyx.conj().T
D2TrYYH = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
D2TrYYH += scnd_frechet(self.D2y_h, self.UX_dgXYX_XU, UHyU, U=self.Uy)
D2TrXH = D2TrXXH + D2TrXYH
D2TrYH = D2TrYXH + D2TrYYH
D2TrHH = inp(Hx, D2TrXH) + inp(Hy, D2TrYH)
# Hessian product of sandwiched Renyi entropy
rho = Hu - ((inp(self.DTrX, Hx) + inp(self.DTrY, Hy)) * self.u) / self.Tr
# D2_u S(X, Y)[(Hu, Hx, Hy)] = (DΨ(X,Y)[(Hx,Hy)]/Ψ - Hu/u) / (α-1)
D2PhiuH = -rho / self.u / (self.alpha - 1)
# D2_X S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_X Ψ + u/Ψ D2_X Ψ(X,Y)[(Hx,Hy)]) / (α-1)
D2PhiXH = (self.DTrX * rho + self.u * D2TrXH) / self.Tr / (self.alpha - 1)
# D2_Y S(X, Y)[(Hu, Hx, Hy)]
# = ((Hu/Ψ - u/Ψ^2 DΨ(X,Y)[(Hx,Hy)]) D_Y Ψ + u/Ψ D2_Y Ψ(X,Y)[(Hx,Hy)]) / (α-1)
D2PhiYH = (self.DTrY * rho + self.u * D2TrYH) / self.Tr / (self.alpha - 1)
D2PhiuHH = inp(Hu, D2PhiuH)
D2PhiXHH = inp(Hx, D2PhiXH)
D2PhiYHH = inp(Hy, D2PhiYH)
# Third order derivatives of trace function
self.irtX_Uxyx = self.irt2_X @ self.Uxyx
self.rtX_Uxyx = self.rt2_X @ self.Uxyx
D1yh_UHyU = self.D1y_h * UHyU
# Second derivatives of D_X Ψ(X, Y)
D3TrXXX = scnd_frechet(self.D2yxy_dg, UYHxYU, UYHxYU, U=self.b2Y_Uyxy)
work = self.Uy_ib2Y_Uyxy.conj().T @ D1yh_UHyU @ self.Uy_ib2Y_Uyxy
D3TrXXY = scnd_frechet(self.D2yxy_g, UYHxYU, work, U=self.b2Y_Uyxy)
D3TrXXY *= self.alpha
D3TrXYX = D3TrXXY
work3 = self.Uy_rtX_Uxyx.conj().T @ D1yh_UHyU @ self.Uy_rtX_Uxyx
D3TrXYY = scnd_frechet(self.D2xyx_g, work3, work3, U=self.irtX_Uxyx)
work2 = scnd_frechet(self.D2y_h, UHyU, UHyU, U=self.Uy_rtX_Uxyx.conj().T)
D3TrXYY += self.irtX_Uxyx @ (self.D1xyx_g * work2) @ self.irtX_Uxyx.conj().T
D3TrXYY *= self.alpha
# Second derivatives of D_Y Ψ(X, Y)
D3TrYYY = thrd_frechet(self.Dy, self.D2y_h, self.d3h(self.Dy), self.Uy,
self.UX_dgXYX_XU, UHyU) # fmt: skip
work = self.Uy_rtX_Uxyx @ (self.D1xyx_dg * work3) @ self.Uy_rtX_Uxyx.conj().T
D3TrYYY += 2 * scnd_frechet(self.D2y_h, work, UHyU, U=self.Uy)
work = self.Uy_rtX_Uxyx @ (self.D1xyx_dg * work2) @ self.Uy_rtX_Uxyx.conj().T
D3TrYYY += self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
work = scnd_frechet(self.D2xyx_dg, work3, work3, U=self.Uy_rtX_Uxyx)
D3TrYYY += self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
work2 = self.irtX_Uxyx.conj().T @ Hx @ self.irtX_Uxyx
work = scnd_frechet(self.D2xyx_g, work2, work3, U=self.Uy_rtX_Uxyx)
D3TrYYX = self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
work = self.Uy_rtX_Uxyx @ (self.D1xyx_g * work2) @ self.Uy_rtX_Uxyx.conj().T
D3TrYYX += scnd_frechet(self.D2y_h, work, UHyU, U=self.Uy)
D3TrYYX *= self.alpha
D3TrYXY = D3TrYYX
work = scnd_frechet(self.D2yxy_g, UYHxYU, UYHxYU, U=self.Uy_ib2Y_Uyxy)
D3TrYXX = self.alpha * self.Uy @ (self.D1y_h * work) @ self.Uy.conj().T
D3TrX = D3TrXXX + D3TrXXY + D3TrXYX + D3TrXYY
D3TrY = D3TrYYY + D3TrYYX + D3TrYXY + D3TrYXX
# Third order derivatives of sandwiched Renyi entropy
eta = 2 * self.u * DTrH * DTrH / self.Tr - 2 * Hu * DTrH - self.u * D2TrHH
eta /= self.Tr * self.Tr
D3PhiuHH = (Hu / self.u) ** 2 + (D2TrHH - DTrH * DTrH / self.Tr) / self.Tr
D3PhiuHH /= self.alpha - 1
D3PhiXHH = (2 * rho * D2TrXH + self.u * D3TrX) / self.Tr + self.DTrX * eta
D3PhiXHH /= self.alpha - 1
D3PhiYHH = (2 * rho * D2TrYH + self.u * D3TrY) / self.Tr + self.DTrY * eta
D3PhiYHH /= self.alpha - 1
# Third derivatives of barrier function
chi = (Ht - self.DPhiu * Hu - inp(self.DPhiX, Hx) - inp(self.DPhiY, Hy))[0, 0]
chi2 = chi * chi
dder3_t = -2 * self.zi3 * chi2 - self.zi2 * (D2PhiuHH + D2PhiXHH + D2PhiYHH)
dder3_u = -dder3_t * self.DPhiu
dder3_u -= 2 * self.zi2 * chi * D2PhiuH
dder3_u += self.zi * D3PhiuHH
dder3_u -= 2 * Hu * Hu / self.u / self.u / self.u
dder3_X = -dder3_t * self.DPhiX
dder3_X -= 2 * self.zi2 * chi * D2PhiXH
dder3_X += self.zi * D3PhiXHH
dder3_X -= 2 * self.inv_X @ Hx @ self.inv_X @ Hx @ self.inv_X
dder3_X = (dder3_X + dder3_X.conj().T) * 0.5
dder3_Y = -dder3_t * self.DPhiY
dder3_Y -= 2 * self.zi2 * chi * D2PhiYH
dder3_Y += self.zi * D3PhiYHH
dder3_Y -= 2 * self.inv_Y @ Hy @ self.inv_Y @ Hy @ self.inv_Y
dder3_Y = (dder3_Y + dder3_Y.conj().T) * 0.5
out[0][:] += dder3_t * a
out[1][:] += dder3_u * a
out[2][:] += dder3_X * a
out[3][:] += dder3_Y * a
return out
# ========================================================================
# Auxilliary functions
# ========================================================================
def congr_aux(self, A):
assert not self.congr_aux_updated
iscomplex = self.iscomplex
# Get slices and views of A matrix to be used in congruence computations
if sp.sparse.issparse(A):
A = A.tocsr()
Au = A[:, [1]]
self.Ax_vec = A[:, self.idx_X]
self.Ay_vec = A[:, self.idx_Y]
Ax_cvec = (self.F2C_op @ self.Ax_vec.T).T
Ay_cvec = (self.F2C_op @ self.Ay_vec.T).T
if sp.sparse.issparse(A):
self.Auxy_cvec = sp.sparse.hstack((Au, Ax_cvec, Ay_cvec), format="coo")
else:
self.Auxy_cvec = np.hstack((Au, Ax_cvec, Ay_cvec))
if sp.sparse.issparse(A):
A = A.toarray()
Ax_dense = np.ascontiguousarray(A[:, self.idx_X])
Ay_dense = np.ascontiguousarray(A[:, self.idx_Y])
self.At = A[:, 0]
self.Au = A[:, [1]]
self.Ax = np.array([vec_to_mat(Ax_k, iscomplex) for Ax_k in Ax_dense])
self.Ay = np.array([vec_to_mat(Ay_k, iscomplex) for Ay_k in Ay_dense])
# Preallocate matrices we will need when performing these congruences
self.work = np.empty_like(self.Auxy_cvec.T)
self.work0 = np.empty_like(self.Ax)
self.work1 = np.empty_like(self.Ax)
self.work2 = np.empty_like(self.Ax)
self.work3 = np.empty_like(self.Ax)
self.work4 = np.empty_like(self.Ax)
self.work5 = np.empty_like(self.Ax)
self.work6 = np.empty((self.Ax.shape[::-1]), dtype=self.dtype)
self.congr_aux_updated = True
def update_hessprod_aux(self):
assert not self.hess_aux_updated
assert self.grad_updated
self.b2Y_Uyxy = self.beta2_Y @ self.Uyxy
self.Uy_rtX_Uxyx = self.Uy.conj().T @ self.rt2_X @ self.Uxyx
self.Uy_ib2Y_Uyxy = self.Uy.conj().T @ self.ibeta2_Y @ self.Uyxy
self.D1y_h = D1_f(self.Dy, self.h(self.Dy), self.dh(self.Dy))
self.D2y_h = D2_f(self.Dy, self.D1y_h, self.d2h(self.Dy))
self.D1yxy_g = D1_f(self.Dyxy, self.g(self.Dyxy), self.dg(self.Dyxy))
self.D1xyx_dg = D1_f(self.Dxyx, self.dg(self.Dxyx), self.d2g(self.Dxyx))
self.D1yxy_dg = D1_f(self.Dyxy, self.dg(self.Dyxy), self.d2g(self.Dyxy))
# Preparing other required variables
self.zi2 = self.zi * self.zi
self.hess_aux_updated = True
def update_dder3_aux(self):
assert not self.dder3_aux_updated
assert self.hess_aux_updated
self.D2yxy_g = D2_f(self.Dyxy, self.D1yxy_g, self.d2g(self.Dyxy))
self.D2yxy_dg = D2_f(self.Dyxy, self.D1yxy_dg, self.d3g(self.Dyxy))
self.D1xyx_g = D1_f(self.Dxyx, self.g(self.Dxyx), self.dg(self.Dxyx))
self.D2xyx_g = D2_f(self.Dxyx, self.D1xyx_g, self.d2g(self.Dxyx))
self.D2xyx_dg = D2_f(self.Dxyx, self.D1xyx_dg, self.d3g(self.Dxyx))
# Preparing other required variables
self.zi3 = self.zi2 * self.zi
self.dder3_aux_updated = True
def update_invhessprod_aux(self):
assert not self.invhess_aux_updated
assert self.grad_updated
assert self.hess_aux_updated
if not self.invhess_aux_aux_updated:
self.update_invhessprod_aux_aux()
# Precompute and factorize the matrix
# M = 1/z [ D2uuPhi D2uxPhi D2uyPhi ] + [ 1 / u^2 ]
# [ D2uxPhi D2xxPhi D2xyPhi ] + [ X^1 ⊗ X^-1 ]
# [ D2uyPhi D2yxPhi D2yyPhi ] [ Y^1 ⊗ Y^-1 ]
self.z2 = self.z * self.z
work10, work11, work12 = self.work10, self.work11, self.work12
work13, work14, work15 = self.work13, self.work14, self.work15
# Precompute compact vectorizations of derivatives
DTrX_vec = self.DTrX.view(np.float64).reshape(-1, 1)
DTrX_cvec = (self.F2C_op @ DTrX_vec).reshape(-1, 1, 1)
DTrY_vec = self.DTrY.view(np.float64).reshape(-1, 1)
DTrY_cvec = (self.F2C_op @ DTrY_vec).reshape(-1, 1, 1)
DPhiX_vec = self.DPhiX.view(np.float64).reshape(-1, 1)
DPhiX_cvec = self.F2C_op @ DPhiX_vec
DPhiY_vec = self.DPhiY.view(np.float64).reshape(-1, 1)
DPhiY_cvec = self.F2C_op @ DPhiY_vec
self.DPhi_cvec = np.vstack((self.DPhiu, DPhiX_cvec, DPhiY_cvec))
# ======================================================================
# Construct blocks of Hessian corresponding to u
# ======================================================================
Huu = -self.zi / (self.u * (self.alpha - 1)) + 1 / self.u / self.u
Hux = self.zi * DTrX_cvec.ravel() / self.Tr / (self.alpha - 1)
Huy = self.zi * DTrY_cvec.ravel() / self.Tr / (self.alpha - 1)
# ======================================================================
# Construct YY block of Hessian, i.e., (D2yyxPhi + Y^-1 ⊗ Y^-1)
# ======================================================================
# Hessian products of trace function
# D2_YY Ψ(X, Y)[Hy] = D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
# + Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
# Compute first term i.e., D2h(Y)[Hy, X^½ g'(X^½ Y^β X^½) X^½]
congr_multi(work11, self.Uy.conj().T, self.E, work=work13)
np.multiply(work11, self.D1y_h, out=work14)
congr_multi(work12, self.Uy_rtX_Uxyx.conj().T, work14, work=work13)
work12 *= self.D1xyx_dg
congr_multi(work14, self.Uy_rtX_Uxyx, work12, work=work13)
work14 *= self.D1y_h
congr_multi(work10, self.Uy, work14, work=work13)
# Compute second term i.e., Dh(Y)[X^½ D(g')(X^½ Y^β X^½)[X^½ Dh(X)[Hx] X^½] X^½]
scnd_frechet_multi(work14, self.D2y_h, work11, self.UX_dgXYX_XU, U=self.Uy,
work1=work12, work2=work13, work3=work15) # fmt: skip
work10 += work14
# Hessian product of sandwiched Renyi entropy
# D2_YY S(X, Y)[Hy]
# = (u/Ψ D2_YY Ψ(X, Y)[Hy] - u/Ψ^2 D_Y Ψ(X, Y)[Hy] D_Y Ψ) / (α - 1)
np.multiply(DTrY_cvec, self.DTrY.reshape(1, self.n, self.n), out=work13)
work13 /= self.Tr
work10 -= work13
work10 *= self.zi * self.u / self.Tr / (self.alpha - 1)
# Y^1 Eij Y^-1
congr_multi(work14, self.inv_Y, self.E, work=work13)
work14 += work10
# Vectorize matrices as compact vectors to get square matrix
work = work14.view(np.float64).reshape((self.vn, -1))
Hyy = x_dot_dense(self.F2C_op, work.T)
# ======================================================================
# Construct XX block of Hessian, i.e., (D2xxPhi + X^-1 ⊗ X^-1)
# ======================================================================
# Hessian products of trace function
# D2_XX Ψ(X, Y)[Hx] = Y^β/2 D(g')(Y^β/2 X Y^β/2)[Y^β/2 Hx Y^β/2] Y^β/2
congr_multi(work14, self.b2Y_Uyxy.conj().T, self.E, work=work13)
np.multiply(work14, self.D1yxy_dg, out=work10)
congr_multi(work11, self.b2Y_Uyxy, work10, work=work13)
# Hessian product of sandwiched Renyi entropy
# D2_XX S(X, Y)[Hx]
# = (u/Ψ D2_XX Ψ(X, Y)[Hx] - u/Ψ^2 D_X Ψ(X, Y)[Hx] D_X Ψ) / (α - 1)
np.multiply(DTrX_cvec, self.DTrX.reshape(1, self.n, self.n), out=work13)
work13 /= self.Tr
work11 -= work13
work11 *= self.zi * self.u / self.Tr / (self.alpha - 1)
# X^-1 Eij X^-1
congr_multi(work12, self.inv_X, self.E, work=work13)
work12 += work11
# Vectorize matrices as compact vectors to get square matrix
work = work12.view(np.float64).reshape((self.vn, -1))
Hxx = x_dot_dense(self.F2C_op, work.T)
# ======================================================================
# Construct XY block of Hessian, i.e., D2xyPhi
# ======================================================================
# Hessian products of trace function
# D2_XY Ψ(X, Y)[Hy] = α * Y^β/2 Dg(Y^β/2 X Y^β/2)[Y^-β/2 Dh(Y)[Hy] Y^-β/2] Y^β/2
work14 *= self.D1yxy_g
congr_multi(work12, self.Uy_ib2Y_Uyxy, work14, work=work13)
work12 *= self.alpha * self.D1y_h
congr_multi(work14, self.Uy, work12, work=work13)
# Hessian product of sandwiched Renyi entropy
# D2_XX S(X, Y)[Hx]
# = (u/Ψ D2_XY Ψ(X, Y)[Hy] - u/Ψ^2 D_Y Ψ(X, Y)[Hy] D_X Ψ) / (α - 1)
np.multiply(DTrX_cvec, self.DTrY.reshape(1, self.n, self.n), out=work13)
work13 /= self.Tr
work14 -= work13
work14 *= self.zi * self.u / self.Tr / (self.alpha - 1)
# Vectorize matrices as compact vectors to get square matrix
work = work14.view(np.float64).reshape((self.vn, -1))
Hxy = x_dot_dense(self.F2C_op, work.T)
# Construct Hessian and factorize
Hxx = (Hxx + Hxx.conj().T) * 0.5
Hyy = (Hyy + Hyy.conj().T) * 0.5
self.hess[0, 0] = Huu[0, 0]
self.hess[0, 1 : 1 + self.vn] = Hux
self.hess[0, 1 + self.vn :] = Huy
self.hess[1 : 1 + self.vn, 0] = Hux
self.hess[1 + self.vn :, 0] = Huy
self.hess[1 : 1 + self.vn, 1 : 1 + self.vn] = Hxx
self.hess[1 + self.vn :, 1 + self.vn :] = Hyy
self.hess[1 + self.vn :, 1 : 1 + self.vn] = Hxy
self.hess[1 : 1 + self.vn, 1 + self.vn :] = Hxy.T
self.hess_fact = cho_fact(self.hess)
self.invhess_aux_updated = True
return
def update_invhessprod_aux_aux(self):
assert not self.invhess_aux_aux_updated
self.precompute_computational_basis()
self.hess = np.empty((1 + 2 * self.vn, 1 + 2 * self.vn))
self.work10 = np.empty((self.vn, self.n, self.n), dtype=self.dtype)
self.work11 = np.empty((self.vn, self.n, self.n), dtype=self.dtype)
self.work12 = np.empty((self.vn, self.n, self.n), dtype=self.dtype)
self.work13 = np.empty((self.vn, self.n, self.n), dtype=self.dtype)
self.work14 = np.empty((self.vn, self.n, self.n), dtype=self.dtype)
self.work15 = np.empty((self.n, self.n, self.vn), dtype=self.dtype)
self.invhess_aux_aux_updated = True
def get_central_ray(self):
# Solve a 4-dimensional nonlinear system of equations to get the central
# point of the barrier function
n, alpha = self.n, self.alpha
(t, u, x, y) = (1.0 + n * self.g(1.0), 1.0, 1.0, 1.0)
for _ in range(20):
# Precompute some useful things
x_a, y_b = np.power(x, alpha), np.power(y, 1 - alpha)
z = t - u * np.log(n * x_a * y_b / u) / (alpha - 1)
zi = 1 / z
zi2 = zi * zi
du = (np.log(n * x_a * y_b / u) - 1) / (alpha - 1)
dx = alpha / (alpha - 1) * u / x
dy = -u / y
d2du2 = -1 / (alpha - 1) / u
d2dudx = alpha / (alpha - 1) / x
d2dudy = -1 / y
d2dx2 = -alpha / (alpha - 1) * u / x / x
d2dy2 = 0
d2dxdy = u / y / y
# Get gradient
g = np.array([t - zi,
u + du * zi - 1 / u,
n * x + dx * zi - n / x,
n * y + dy * zi - n / y]) # fmt: skip
# Get Hessian
(Htt, Htu, Htx, Hty) = (zi2, -zi2 * du, -zi2 * dx, -zi2 * dy)
Huu = zi2 * dx * dx + zi * d2du2 + 1 / u / u
Hux = zi2 * du * dx + zi * d2dudx
Huy = zi2 * du * dy + zi * d2dudy
Hxx = zi2 * dx * dx + zi * d2dx2 + n / x / x
Hyy = zi2 * dy * dy + zi * d2dy2 + n / y / y
Hxy = zi2 * dx * dy + zi * d2dxdy
H = np.array([[Htt + 1, Htu, Htx, Hty],
[Htu, Huu + 1, Hux, Huy],
[Htx, Hux, Hxx + n, Hxy],
[Hty, Huy, Hxy, Hyy + n]]) # fmt: skip
# Perform Newton step
delta = -np.linalg.solve(H, g)
decrement = -np.dot(delta, g)
# Check feasible
(t1, u1, x1, y1) = (t + delta[0], u + delta[1], x + delta[2], y + delta[3])
x_a, y_b = np.power(x, alpha), np.power(y, 1 - alpha)
if x1 < 0 or y1 < 0 or t1 < u1 * np.log(n * x_a * y_b / u1) / (alpha - 1):
# Exit if not feasible and return last feasible point
break
(t, u, x, y) = (t1, u1, x1, y1)
# Exit if decrement is small, i.e., near optimality
if decrement / 2.0 <= 1e-12:
break
return (t, u, x, y)