Source code for qics.model

# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi

# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics

import numpy as np
import scipy as sp

from qics._utils.linalg import abs_max, is_full_col_rank, scale_axis


[docs] class Model: r"""A class representing an instance of the standard form primal .. math:: \min_{x \in \mathbb{R}^n} &&& c^\top x \text{s.t.} &&& b - Ax = 0 &&& h - Gx \in \mathcal{K}, and dual .. math:: \max_{y \in \mathbb{R}^p, z \in \mathbb{R}^q} &&& -b^\top y - h^\top z \text{s.t.} &&& c + A^\top y + G^\top z = 0 &&& z \in \mathcal{K}_*, conic programs, where :math:`c\in\mathbb{R}^n`, :math:`b\in\mathbb{R}^p`, :math:`h\in\mathbb{R}^q`, :math:`A\in\mathbb{R}^{p\times n}`, :math:`G\in\mathbb{R}^{q\times n}`, and :math:`\mathcal{K}\subset\mathbb{R}^{q}` is a convex, proper cone with dual cone :math:`\mathcal{K}_*\subset\mathbb{R}^{q}`. Parameters ---------- c : :class:`~numpy.ndarray` 2D :obj:`~numpy.float64` array of size ``(n, 1)`` representing the linear objective :math:`c`. A : :class:`~numpy.ndarray` or :class:`~scipy.sparse.sparray`, optional 2D :obj:`~numpy.float64` array of size ``(p, 1)`` representing linear equality constraint matrix :math:`A`. The default is ``numpy.empty((0, n))``, i.e., there are no linear equalitiy constraints. b : :class:`~numpy.ndarray`, optional 2D :obj:`~numpy.float64` array of size ``(p, 1)`` representing linear equality constraint vector :math:`b`. The default is ``numpy.zeros((p, 1))``, i.e., :math:`b=0`. G : :class:`~numpy.ndarray` or :class:`~scipy.sparse.sparray`, optional 2D :obj:`~numpy.float64` array of size ``(q, n)`` representing linear cone constraint matrix :math:`G`. The default is ``-scipy.sparse.eye(n)``, i.e., cone constraints are of the simplified form :math:`x+h\in\mathcal{K}`. h : :class:`~numpy.ndarray`, optional 2D :obj:`~numpy.float64` array of size ``(q, 1)`` representing linear cone constraint vector :math:`h`. The default is ``numpy.zeros((q, 1))``, i.e., :math:`h=0`. cones : :class:`list` of :mod:`~qics.cones`, optional Cartesian product of cones :math:`\mathcal{K}`. Default is ``[]`` i.e., there are no conic constraints. offset : :class:`float`, optional Constant offset term to add to the objective function. Default is ``0``. """ def __init__(self, c, A=None, b=None, G=None, h=None, cones=None, offset=0.0): # Intiialize model parameters and default values for missing data self.n_orig = self.n = np.size(c) self.p_orig = self.p = np.size(b) if (b is not None) else 0 self.q_orig = self.q = np.size(h) if (h is not None) else self.n # Make copies of everything so we don't overwrite data matrices self.c = c.copy() self.A = A.copy() if (A is not None) else np.empty((0, self.n)) self.b = b.copy() if (b is not None) else np.empty((0, 1)) self.G = G.copy() if (G is not None) else -sp.sparse.eye(self.n).tocsr() self.h = h.copy() if (h is not None) else np.zeros((self.n, 1)) self.cones = cones self.offset = offset # Make sure dimensions of matrices all make sense if self.c.shape[1] != 1 or self.b.shape[1] != 1 or self.h.shape[1] != 1: raise ValueError( "The arrays c, b, and h should all have a dimension (-1, 1), but have " "dimensions c:" + str(self.c.shape) + ", b:" + str(self.b.shape) + ", and h:" + str(self.h.shape) + "." ) # fmt: skip if self.A.shape[1] != self.n or self.G.shape[1] != self.n: raise ValueError( "The length of c should match the number of columns in A and G, but " "have dimensions c:" + str(self.c.shape) + ", A:" + str(self.A.shape) + ", and G:" + str(self.G.shape) + "." ) # fmt: skip if self.A.shape[0] != self.p: raise ValueError( "The length of b should match the number of rows in A, but have " "dimensions b:" + str(self.b.shape) + " and A:" + str(self.A.shape) + "." ) # fmt: skip if self.G.shape[0] != self.q: raise ValueError( "The length of h should match the number of rows in G, but have " "dimensions h:" + str(self.h.shape) + " and G:" + str(self.G.shape) + "." ) # fmt: skip # Barrier parameter self.nu = 1 + sum([cone.nu for cone in cones]) # Get properties of the problem self.issymmetric = all([cone.get_issymmetric() for cone in self.cones]) self.iscomplex = any([cone.get_iscomplex() for cone in self.cones]) # Check if model uses A or G matrices self.use_G = not _is_like_eye(self.G) self.use_A = (A is not None) and (np.prod(A.shape) > 0) def _preprocess(self, use_invhess=False, init_pnt=None): SPARSE_THRESHOLD = 0.01 cone_idxs = self.cone_idxs = _build_cone_idxs(self.q, self.cones) # Sparsify A and G if they are sufficiently sparse self.A = _sparsify(self.A, SPARSE_THRESHOLD, "csr") if self.use_G: self.G = _sparsify(self.G, SPARSE_THRESHOLD, "csr") # Restructure to allow for avoiding inverse Hessian oracles if self.use_G and not use_invhess: self._restructure(init_pnt) # Rescale model self._rescale() # Precompute transposes of A and G for faster sparse operations self.A_T = self.A.T.tocsr() if sp.sparse.issparse(self.A) else self.A.T self.G_T = self.G.T.tocsr() if sp.sparse.issparse(self.G) else self.G.T # Get slices of A or G matrices correpsonding to each cone # and some other handy precomputations if self.use_G: self.G_T_views = [self.G_T[:, idxs_k] for idxs_k in cone_idxs] self.G_T_views = _sparsify(self.G_T_views, SPARSE_THRESHOLD) # Need a dense A' to do Cholesky solves on if sp.sparse.issparse(self.A): self.A_T_dense = self.A_T.toarray() else: self.A_T_dense = self.A_T issparse_list = [sp.sparse.issparse(Gk) for Gk in self.G_T_views] self.issparse = any(issparse_list) elif self.use_A: # After rescaling, G is an easily invertible square diagonal matrix self.G_inv = np.reciprocal(self.G.diagonal()).reshape((-1, 1)) self.A_invG = scale_axis(self.A.copy(), scale_cols=self.G_inv) if sp.sparse.issparse(self.A_invG): self.A_invG = self.A_invG.tocsr() self.A_invG_views = [self.A_invG[:, idxs_k] for idxs_k in cone_idxs] self.A_invG_views = _sparsify(self.A_invG_views, SPARSE_THRESHOLD) issparse_list = [sp.sparse.issparse(Ak) for Ak in self.A_invG_views] self.issparse = any(issparse_list) else: self.G_inv = np.reciprocal(self.G.diagonal()).reshape((-1, 1)) self.issparse = True return def _restructure(self, init_pnt=None): # Restructures the conic program into # min <c,x1> # s.t A*x1 = b, x2 = 0, x3 = 1 # h1*x2 + h2*x3 - G*x1 ∈ K # where h1 is an interior point of K and h2 = h. This allows us to # solve problems using the cone K'={x : G*x ∈ K}. from qics.point import VecProduct n = self.n self.x_offset = np.zeros((n, 1)) # Add variable x2 and constraint x2 = 0 if necessary # Find an interior point of K and normalize it if init_pnt is None: s_init = VecProduct(self.cones) s_init.vec.fill(np.nan) else: # If user gives us an inital s, then use this instead s_init = init_pnt.s for k, cone_k in enumerate(self.cones): if any(np.isnan(s_init.vecs[k])): cone_k.get_init_point(s_init[k]) s_norm = np.sum(np.abs(s_init.vec)) G_temp = _hstack((self.G, -s_init.vec / s_norm)) if is_full_col_rank(G_temp): A_new_col = sp.sparse.coo_matrix((self.p, 1)) A_new_row = sp.sparse.coo_matrix(([1.0], ([0], [n])), (1, n + 1)) self.c = np.vstack((self.c, np.array([[0.0]]))) self.A = _vstack((_hstack((self.A, A_new_col)), A_new_row)) self.b = np.vstack((self.b, np.array([[0.0]]))) self.G = G_temp self.x_offset = np.vstack((self.x_offset, np.array([[0.0]]))) self.use_A = True (n, _) = (self.n, self.p) = (self.n + 1, self.p + 1) # Add variable x3 and constraint x3 = 1 if necessary if np.any(self.h): h_norm = np.sum(np.abs(self.h)) G_temp = _hstack((self.G, -self.h / h_norm)) if is_full_col_rank(G_temp): A_new_col = sp.sparse.coo_matrix((self.p, 1)) A_new_row = sp.sparse.coo_matrix(([1.0], ([0], [n])), (1, n + 1)) self.c = np.vstack((self.c, np.array([[0.0]]))) self.A = _vstack((_hstack((self.A, A_new_col)), A_new_row)) self.b = np.vstack((self.b, np.array([[h_norm]]))) self.G = G_temp self.h = np.zeros((self.q, 1)) self.x_offset = np.vstack((self.x_offset, np.array([[0.0]]))) self.use_A = True (n, _) = (self.n, self.p) = (self.n + 1, self.p + 1) else: self.x_offset = sp.sparse.linalg.lsqr(self.G, self.h)[0] self.x_offset = self.x_offset.reshape((-1, 1)) self.offset += (self.c.T @ self.x_offset)[0, 0] self.b = self.b - self.A @ self.x_offset self.h = np.zeros((self.q, 1)) if self.x_offset is None: self.x_offset = np.zeros((n, 1)) def _rescale(self): # Rescale c self.c_scale = np.maximum.reduce([np.abs(self.c.ravel()), abs_max(self.A, axis=0), abs_max(self.G, axis=0)]) # fmt: skip self.c_scale = np.sqrt(self.c_scale).reshape((-1, 1)) # Rescale b self.b_scale = np.maximum.reduce([np.abs(self.b.ravel()), abs_max(self.A, axis=1)]) # fmt: skip self.b_scale = np.sqrt(self.b_scale).reshape((-1, 1)) # Rescale h # Note we can only scale each cone by a positive factor, and # we can't scale each individual variable by a different factor # (except for the nonnegative orthant) from qics.cones import NonNegOrthant self.h_scale = np.zeros((self.q, 1)) h_absmax = np.abs(self.h.ravel()) G_absmax = abs_max(self.G, axis=1) for k, cone_k in enumerate(self.cones): idxs = self.cone_idxs[k] if isinstance(cone_k, NonNegOrthant): self.h_scale[idxs, 0] = np.maximum.reduce([h_absmax[idxs], G_absmax[idxs]]) # fmt: skip else: self.h_scale[idxs, 0] = np.max([h_absmax[idxs], G_absmax[idxs]]) self.h_scale = np.sqrt(self.h_scale) # Ensure there are no divide by zeros EPS = np.finfo(self.b_scale.dtype).eps self.c_scale[self.c_scale < EPS] = 1.0 self.b_scale[self.b_scale < EPS] = 1.0 self.h_scale[self.h_scale < EPS] = 1.0 # Rescale data self.c /= self.c_scale self.b /= self.b_scale self.h /= self.h_scale self.A = scale_axis(self.A, scale_rows=np.reciprocal(self.b_scale), scale_cols=np.reciprocal(self.c_scale)) # fmt: skip self.G = scale_axis(self.G, scale_rows=np.reciprocal(self.h_scale), scale_cols=np.reciprocal(self.c_scale)) # fmt: skip return
def _is_like_eye(A, tol=1e-10): if A.shape[0] != A.shape[1]: return False n = A.shape[0] if sp.sparse.issparse(A): A_minus_eye = sp.sparse.eye(n) - abs(A) return sp.sparse.linalg.norm(A_minus_eye) < tol else: A_minus_eye = np.eye(n) - abs(A) return np.linalg.norm(A_minus_eye) < tol def _vstack(tup): if isinstance(tup, tuple): tup = list(tup) if sp.sparse.issparse(tup[0]): for k in range(1, len(tup)): tup[k] = sp.sparse.coo_matrix(tup[k]) return sp.sparse.vstack(tup) else: for k in range(1, len(tup)): if sp.sparse.issparse(tup[k]): tup[k] = tup[k].toarray() return np.vstack(tup) def _hstack(tup): if isinstance(tup, tuple): tup = list(tup) if sp.sparse.issparse(tup[0]): for k in range(1, len(tup)): tup[k] = sp.sparse.coo_matrix(tup[k]) return sp.sparse.hstack(tup) else: for k in range(1, len(tup)): if sp.sparse.issparse(tup[k]): tup[k] = tup[k].toarray() return np.hstack(tup) def _build_cone_idxs(q, cones): cone_idxs = [] prev_idx = 0 for cone in cones: dim_k = np.sum(cone.dim) cone_idxs.append(slice(prev_idx, prev_idx + dim_k)) prev_idx += dim_k if prev_idx != q: raise ValueError( "The dimensions of h and the cone K should be match, but are instead have" + " the dimensions " + str(q) + " and " + str(prev_idx) + "." ) # fmt: skip return cone_idxs def _sparsify(A, threshold, format="coo"): def sparsify_single(A, threshold, format): if A.size == 0: if sp.sparse.issparse(A): A = A.toarray() return A if sp.sparse.issparse(A): if A.nnz / np.prod(A.shape) > threshold: return A.toarray() else: if format == "coo": return A.tocoo() elif format == "csr": return A.tocsr() else: if np.count_nonzero(A) / A.size < threshold: if format == "coo": return sp.sparse.coo_matrix(A) elif format == "csr": return sp.sparse.csr_matrix(A) return A if isinstance(A, list): return [sparsify_single(A_k, threshold, format) for A_k in A] else: return sparsify_single(A, threshold, format)