# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
import scipy as sp
from qics._utils.linalg import abs_max, is_full_col_rank, scale_axis
[docs]
class Model:
r"""A class representing an instance of the standard form primal
.. math::
\min_{x \in \mathbb{R}^n} &&& c^\top x
\text{s.t.} &&& b - Ax = 0
&&& h - Gx \in \mathcal{K},
and dual
.. math::
\max_{y \in \mathbb{R}^p, z \in \mathbb{R}^q} &&&
-b^\top y - h^\top z
\text{s.t.} &&& c + A^\top y + G^\top z = 0
&&& z \in \mathcal{K}_*,
conic programs, where :math:`c\in\mathbb{R}^n`,
:math:`b\in\mathbb{R}^p`, :math:`h\in\mathbb{R}^q`,
:math:`A\in\mathbb{R}^{p\times n}`, :math:`G\in\mathbb{R}^{q\times n}`,
and :math:`\mathcal{K}\subset\mathbb{R}^{q}` is a convex, proper cone
with dual cone :math:`\mathcal{K}_*\subset\mathbb{R}^{q}`.
Parameters
----------
c : :class:`~numpy.ndarray`
2D :obj:`~numpy.float64` array of size ``(n, 1)`` representing the
linear objective :math:`c`.
A : :class:`~numpy.ndarray` or :class:`~scipy.sparse.sparray`, optional
2D :obj:`~numpy.float64` array of size ``(p, 1)`` representing
linear equality constraint matrix :math:`A`. The default is
``numpy.empty((0, n))``, i.e., there are no linear equalitiy
constraints.
b : :class:`~numpy.ndarray`, optional
2D :obj:`~numpy.float64` array of size ``(p, 1)`` representing
linear equality constraint vector :math:`b`. The default is
``numpy.zeros((p, 1))``, i.e., :math:`b=0`.
G : :class:`~numpy.ndarray` or :class:`~scipy.sparse.sparray`, optional
2D :obj:`~numpy.float64` array of size ``(q, n)`` representing
linear cone constraint matrix :math:`G`. The default is
``-scipy.sparse.eye(n)``, i.e., cone constraints are of the
simplified form :math:`x+h\in\mathcal{K}`.
h : :class:`~numpy.ndarray`, optional
2D :obj:`~numpy.float64` array of size ``(q, 1)`` representing
linear cone constraint vector :math:`h`. The default is
``numpy.zeros((q, 1))``, i.e., :math:`h=0`.
cones : :class:`list` of :mod:`~qics.cones`, optional
Cartesian product of cones :math:`\mathcal{K}`. Default is ``[]``
i.e., there are no conic constraints.
offset : :class:`float`, optional
Constant offset term to add to the objective function. Default is
``0``.
"""
def __init__(self, c, A=None, b=None, G=None, h=None, cones=None, offset=0.0):
# Intiialize model parameters and default values for missing data
self.n_orig = self.n = np.size(c)
self.p_orig = self.p = np.size(b) if (b is not None) else 0
self.q_orig = self.q = np.size(h) if (h is not None) else self.n
# Make copies of everything so we don't overwrite data matrices
self.c = c.copy()
self.A = A.copy() if (A is not None) else np.empty((0, self.n))
self.b = b.copy() if (b is not None) else np.empty((0, 1))
self.G = G.copy() if (G is not None) else -sp.sparse.eye(self.n).tocsr()
self.h = h.copy() if (h is not None) else np.zeros((self.n, 1))
self.cones = cones
self.offset = offset
# Make sure dimensions of matrices all make sense
if self.c.shape[1] != 1 or self.b.shape[1] != 1 or self.h.shape[1] != 1:
raise ValueError(
"The arrays c, b, and h should all have a dimension (-1, 1), but have "
"dimensions c:" + str(self.c.shape) + ", b:" + str(self.b.shape) +
", and h:" + str(self.h.shape) + "."
) # fmt: skip
if self.A.shape[1] != self.n or self.G.shape[1] != self.n:
raise ValueError(
"The length of c should match the number of columns in A and G, but "
"have dimensions c:" + str(self.c.shape) + ", A:" + str(self.A.shape) +
", and G:" + str(self.G.shape) + "."
) # fmt: skip
if self.A.shape[0] != self.p:
raise ValueError(
"The length of b should match the number of rows in A, but have "
"dimensions b:" + str(self.b.shape) + " and A:" + str(self.A.shape) +
"."
) # fmt: skip
if self.G.shape[0] != self.q:
raise ValueError(
"The length of h should match the number of rows in G, but have "
"dimensions h:" + str(self.h.shape) + " and G:" + str(self.G.shape) +
"."
) # fmt: skip
# Barrier parameter
self.nu = 1 + sum([cone.nu for cone in cones])
# Get properties of the problem
self.issymmetric = all([cone.get_issymmetric() for cone in self.cones])
self.iscomplex = any([cone.get_iscomplex() for cone in self.cones])
# Check if model uses A or G matrices
self.use_G = not _is_like_eye(self.G)
self.use_A = (A is not None) and (np.prod(A.shape) > 0)
def _preprocess(self, use_invhess=False, init_pnt=None):
SPARSE_THRESHOLD = 0.01
cone_idxs = self.cone_idxs = _build_cone_idxs(self.q, self.cones)
# Sparsify A and G if they are sufficiently sparse
self.A = _sparsify(self.A, SPARSE_THRESHOLD, "csr")
if self.use_G:
self.G = _sparsify(self.G, SPARSE_THRESHOLD, "csr")
# Restructure to allow for avoiding inverse Hessian oracles
if self.use_G and not use_invhess:
self._restructure(init_pnt)
# Rescale model
self._rescale()
# Precompute transposes of A and G for faster sparse operations
self.A_T = self.A.T.tocsr() if sp.sparse.issparse(self.A) else self.A.T
self.G_T = self.G.T.tocsr() if sp.sparse.issparse(self.G) else self.G.T
# Get slices of A or G matrices correpsonding to each cone
# and some other handy precomputations
if self.use_G:
self.G_T_views = [self.G_T[:, idxs_k] for idxs_k in cone_idxs]
self.G_T_views = _sparsify(self.G_T_views, SPARSE_THRESHOLD)
# Need a dense A' to do Cholesky solves on
if sp.sparse.issparse(self.A):
self.A_T_dense = self.A_T.toarray()
else:
self.A_T_dense = self.A_T
issparse_list = [sp.sparse.issparse(Gk) for Gk in self.G_T_views]
self.issparse = any(issparse_list)
elif self.use_A:
# After rescaling, G is an easily invertible square diagonal matrix
self.G_inv = np.reciprocal(self.G.diagonal()).reshape((-1, 1))
self.A_invG = scale_axis(self.A.copy(), scale_cols=self.G_inv)
if sp.sparse.issparse(self.A_invG):
self.A_invG = self.A_invG.tocsr()
self.A_invG_views = [self.A_invG[:, idxs_k] for idxs_k in cone_idxs]
self.A_invG_views = _sparsify(self.A_invG_views, SPARSE_THRESHOLD)
issparse_list = [sp.sparse.issparse(Ak) for Ak in self.A_invG_views]
self.issparse = any(issparse_list)
else:
self.G_inv = np.reciprocal(self.G.diagonal()).reshape((-1, 1))
self.issparse = True
return
def _restructure(self, init_pnt=None):
# Restructures the conic program into
# min <c,x1>
# s.t A*x1 = b, x2 = 0, x3 = 1
# h1*x2 + h2*x3 - G*x1 ∈ K
# where h1 is an interior point of K and h2 = h. This allows us to
# solve problems using the cone K'={x : G*x ∈ K}.
from qics.point import VecProduct
n = self.n
self.x_offset = np.zeros((n, 1))
# Add variable x2 and constraint x2 = 0 if necessary
# Find an interior point of K and normalize it
if init_pnt is None:
s_init = VecProduct(self.cones)
s_init.vec.fill(np.nan)
else:
# If user gives us an inital s, then use this instead
s_init = init_pnt.s
for k, cone_k in enumerate(self.cones):
if any(np.isnan(s_init.vecs[k])):
cone_k.get_init_point(s_init[k])
s_norm = np.sum(np.abs(s_init.vec))
G_temp = _hstack((self.G, -s_init.vec / s_norm))
if is_full_col_rank(G_temp):
A_new_col = sp.sparse.coo_matrix((self.p, 1))
A_new_row = sp.sparse.coo_matrix(([1.0], ([0], [n])), (1, n + 1))
self.c = np.vstack((self.c, np.array([[0.0]])))
self.A = _vstack((_hstack((self.A, A_new_col)), A_new_row))
self.b = np.vstack((self.b, np.array([[0.0]])))
self.G = G_temp
self.x_offset = np.vstack((self.x_offset, np.array([[0.0]])))
self.use_A = True
(n, _) = (self.n, self.p) = (self.n + 1, self.p + 1)
# Add variable x3 and constraint x3 = 1 if necessary
if np.any(self.h):
h_norm = np.sum(np.abs(self.h))
G_temp = _hstack((self.G, -self.h / h_norm))
if is_full_col_rank(G_temp):
A_new_col = sp.sparse.coo_matrix((self.p, 1))
A_new_row = sp.sparse.coo_matrix(([1.0], ([0], [n])), (1, n + 1))
self.c = np.vstack((self.c, np.array([[0.0]])))
self.A = _vstack((_hstack((self.A, A_new_col)), A_new_row))
self.b = np.vstack((self.b, np.array([[h_norm]])))
self.G = G_temp
self.h = np.zeros((self.q, 1))
self.x_offset = np.vstack((self.x_offset, np.array([[0.0]])))
self.use_A = True
(n, _) = (self.n, self.p) = (self.n + 1, self.p + 1)
else:
self.x_offset = sp.sparse.linalg.lsqr(self.G, self.h)[0]
self.x_offset = self.x_offset.reshape((-1, 1))
self.offset += (self.c.T @ self.x_offset)[0, 0]
self.b = self.b - self.A @ self.x_offset
self.h = np.zeros((self.q, 1))
if self.x_offset is None:
self.x_offset = np.zeros((n, 1))
def _rescale(self):
# Rescale c
self.c_scale = np.maximum.reduce([np.abs(self.c.ravel()),
abs_max(self.A, axis=0),
abs_max(self.G, axis=0)]) # fmt: skip
self.c_scale = np.sqrt(self.c_scale).reshape((-1, 1))
# Rescale b
self.b_scale = np.maximum.reduce([np.abs(self.b.ravel()),
abs_max(self.A, axis=1)]) # fmt: skip
self.b_scale = np.sqrt(self.b_scale).reshape((-1, 1))
# Rescale h
# Note we can only scale each cone by a positive factor, and
# we can't scale each individual variable by a different factor
# (except for the nonnegative orthant)
from qics.cones import NonNegOrthant
self.h_scale = np.zeros((self.q, 1))
h_absmax = np.abs(self.h.ravel())
G_absmax = abs_max(self.G, axis=1)
for k, cone_k in enumerate(self.cones):
idxs = self.cone_idxs[k]
if isinstance(cone_k, NonNegOrthant):
self.h_scale[idxs, 0] = np.maximum.reduce([h_absmax[idxs],
G_absmax[idxs]]) # fmt: skip
else:
self.h_scale[idxs, 0] = np.max([h_absmax[idxs], G_absmax[idxs]])
self.h_scale = np.sqrt(self.h_scale)
# Ensure there are no divide by zeros
EPS = np.finfo(self.b_scale.dtype).eps
self.c_scale[self.c_scale < EPS] = 1.0
self.b_scale[self.b_scale < EPS] = 1.0
self.h_scale[self.h_scale < EPS] = 1.0
# Rescale data
self.c /= self.c_scale
self.b /= self.b_scale
self.h /= self.h_scale
self.A = scale_axis(self.A,
scale_rows=np.reciprocal(self.b_scale),
scale_cols=np.reciprocal(self.c_scale)) # fmt: skip
self.G = scale_axis(self.G,
scale_rows=np.reciprocal(self.h_scale),
scale_cols=np.reciprocal(self.c_scale)) # fmt: skip
return
def _is_like_eye(A, tol=1e-10):
if A.shape[0] != A.shape[1]:
return False
n = A.shape[0]
if sp.sparse.issparse(A):
A_minus_eye = sp.sparse.eye(n) - abs(A)
return sp.sparse.linalg.norm(A_minus_eye) < tol
else:
A_minus_eye = np.eye(n) - abs(A)
return np.linalg.norm(A_minus_eye) < tol
def _vstack(tup):
if isinstance(tup, tuple):
tup = list(tup)
if sp.sparse.issparse(tup[0]):
for k in range(1, len(tup)):
tup[k] = sp.sparse.coo_matrix(tup[k])
return sp.sparse.vstack(tup)
else:
for k in range(1, len(tup)):
if sp.sparse.issparse(tup[k]):
tup[k] = tup[k].toarray()
return np.vstack(tup)
def _hstack(tup):
if isinstance(tup, tuple):
tup = list(tup)
if sp.sparse.issparse(tup[0]):
for k in range(1, len(tup)):
tup[k] = sp.sparse.coo_matrix(tup[k])
return sp.sparse.hstack(tup)
else:
for k in range(1, len(tup)):
if sp.sparse.issparse(tup[k]):
tup[k] = tup[k].toarray()
return np.hstack(tup)
def _build_cone_idxs(q, cones):
cone_idxs = []
prev_idx = 0
for cone in cones:
dim_k = np.sum(cone.dim)
cone_idxs.append(slice(prev_idx, prev_idx + dim_k))
prev_idx += dim_k
if prev_idx != q:
raise ValueError(
"The dimensions of h and the cone K should be match, but are instead have" +
" the dimensions " + str(q) + " and " + str(prev_idx) + "."
) # fmt: skip
return cone_idxs
def _sparsify(A, threshold, format="coo"):
def sparsify_single(A, threshold, format):
if A.size == 0:
if sp.sparse.issparse(A):
A = A.toarray()
return A
if sp.sparse.issparse(A):
if A.nnz / np.prod(A.shape) > threshold:
return A.toarray()
else:
if format == "coo":
return A.tocoo()
elif format == "csr":
return A.tocsr()
else:
if np.count_nonzero(A) / A.size < threshold:
if format == "coo":
return sp.sparse.coo_matrix(A)
elif format == "csr":
return sp.sparse.csr_matrix(A)
return A
if isinstance(A, list):
return [sparsify_single(A_k, threshold, format) for A_k in A]
else:
return sparsify_single(A, threshold, format)