# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
import scipy as sp
class Vector:
"""Base class for a vector"""
def __init__(self):
self.vec = None
def __iadd__(self, other):
if self.vec.size > 0:
self.vec[:] = sp.linalg.blas.daxpy(other.vec, self.vec, a=1)
return self
def __isub__(self, other):
if self.vec.size > 0:
self.vec[:] = sp.linalg.blas.daxpy(other.vec, self.vec, a=-1)
return self
def __imul__(self, a):
self.vec *= a
return self
def axpy(self, a, other):
if self.vec.size > 0:
self.vec[:] = sp.linalg.blas.daxpy(other.vec, self.vec, a=a)
return self
def copy_from(self, other):
if isinstance(other, np.ndarray):
np.copyto(self.vec, other)
else:
np.copyto(self.vec, other.vec)
return self
def norm(self):
return np.sqrt((self.vec.T @ self.vec)[0, 0])
def inp(self, other):
return (self.vec.T @ other.vec)[0, 0]
def fill(self, a):
self.vec.fill(a)
return self
[docs]
class Point(Vector):
r"""A class for a vector containing the variables involved in a
homogeneous self-dual embedding of a primal-dual conic program
:math:`(x, y, z, s, \tau, \kappa)\in\mathbb{R}^n\times\mathbb{R}^p
\times\mathbb{R}^q\times\mathbb{R}^q\times\mathbb{R}\times\mathbb{R}`.
Parameters
----------
model : :class:`~qics.Model`
Model which specifies the conic program which this vector
corresponds to.
Attributes
----------
vec : :class:`~numpy.ndarray`
2D :obj:`~numpy.float64` array of size ``(n+p+2q+2, 1)``
representing the full concatenated vector :math:`(x, y, z, s, \tau,
\kappa)`.
x : :class:`~numpy.ndarray`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(n, 1)``
correpsonding to the primal variable :math:`x`.
y : :class:`~numpy.ndarray`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(p, 1)``
correpsonding to the dual variable :math:`y`.
z : :class:`~qics.point.VecProduct`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(q, 1)``
correpsonding to the dual variable :math:`z`.
s : :class:`~qics.point.VecProduct`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(q, 1)``
correpsonding to the primal variable :math:`s`.
tau : :class:`~numpy.ndarray`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(1, 1)``
correpsonding to the primal homogenizing variable :math:`\tau`.
kap : :class:`~numpy.ndarray`
A :obj:`~numpy.ndarray.view` of ``vec`` of size ``(1, 1)``
correpsonding to the dual homogenizing variable :math:`\kappa`.
"""
def __init__(self, model):
(n, p, q) = (model.n, model.p, model.q)
# Initialize vector
self.vec = np.zeros((n + p + q + q + 2, 1))
# Build views of vector
self._xyz = PointXYZ(model, self.vec[: n + p + q])
self.x = self._xyz.x
self.y = self._xyz.y
self.z = self._xyz.z
self.s = VecProduct(model.cones, self.vec[n + p + q : n + p + q + q])
self.tau = self.vec[n + p + q + q : n + p + q + q + 1]
self.kap = self.vec[n + p + q + q + 1 : n + p + q + q + 2]
return
class PointXYZ(Vector):
"""A class for a vector containing only the (x,y,z) variables invovled in a
primal-dual conic program"""
def __init__(self, model, vec=None):
(n, p, q) = (model.n, model.p, model.q)
# Initialize vector
if vec is not None:
# If view of vector is already given, use that
assert vec.size == n + p + q
self.vec = vec
else:
# Otherwise allocate a new vector
self.vec = np.zeros((n + p + q, 1))
# Build views of vector
self.x = self.vec[:n]
self.y = self.vec[n : n + p]
self.z = VecProduct(model.cones, self.vec[n + p : n + p + q])
return
[docs]
class VecProduct(Vector):
r"""A class for a Cartesian product of vectors corresponding to a list
of cones :math:`\mathcal{K}_i`, i.e., :math:`s\in\mathbb{V}` where
.. math::
\mathbb{V} = \mathbb{V}_1 \times \mathbb{V}_2 \times \ldots \times
\mathbb{V}_k,
and :math:`\mathcal{K}_i \subset \mathbb{V}_i`. Each of these vector
spaces :math:`\mathbb{V}_i` are themselves a Cartesian product of
vector spaces
.. math::
\mathbb{V}_i = \mathbb{V}_{i,1} \times \mathbb{V}_{i,2} \times
\ldots \times \mathbb{V}_{i,k_i},
where :math:`\mathbb{V}_{i,j}` are defined as either the set of real
vectors :math:`\mathbb{R}^n`, symmetric matrices :math:`\mathbb{S}^n`,
or Hermitian matrices :math:`\mathbb{H}^n`.
Parameters
----------
cones : :obj:`list` of :mod:`~qics.cones`
List of cones defining a Cartesian product of vector spaces.
vec : :class:`~numpy.ndarray`, optional
If specified, then this class is initialized as a
:obj:`~numpy.ndarray.view` of ``vec``. Otherwise, the class is
initialized using a newly allocated :class:`~numpy.ndarray`.
Attributes
----------
vec : :class:`~numpy.ndarray`
2D :obj:`~numpy.float64` array of size ``(q, 1)`` representing the
full concatenated Cartesian product of vectors.
mats : :obj:`list` of :obj:`list` of :class:`~numpy.ndarray`
A nested list of :obj:`~numpy.ndarray.view` of ``vec`` where
``mats[i][j]`` returns the array corresponding to the vector space
:math:`\mathbb{V}_{i,j}`. This attribute can also be called using
``__getitem__``, i.e., by directly calling ``self[i][j]``.
vecs : :obj:`list` of :class:`~numpy.ndarray`
A list of :obj:`~numpy.ndarray.view` of ``vec`` where ``vecs[i]``
returns the array corresponding to the vector space
:math:`\mathbb{V}_{i}` as a vectorized column vector.
Examples
--------
Below we show an example of how to initialize a
:class:`~qics.point.VecProduct` and how to access the vectors
corresponding to each cone and variable.
>>> import qics
>>> cones = [ \
... qics.cones.PosSemidefinite(2), \
... qics.cones.QuantRelEntr(3, iscomplex=True) \
... ]
>>> x = qics.point.VecProduct(cones)
>>> x[0][0] # Matrix corresponding to PosSemidefinite cone
array([[0., 0.],
[0., 0.]])
>>> x[1][0] # Value corresponding to t of QuantRelEntr cone
array([[0.]])
>>> x[1][1] # Matrix corresponding to X of QuantRelEntr cone
array([[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]])
>>> x[1][2] # Matrix corresponding to Y of QuantRelEntr cone
array([[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]])
"""
def __init__(self, cones, vec=None):
dims = []
types = []
dim = 0
for cone_k in cones:
dims.append(cone_k.dim)
types.append(cone_k.type)
dim += np.sum(cone_k.dim)
# Initialize vector
if vec is not None:
# If view of vector is already given, use that
assert vec.size == dim
self.vec = vec
else:
# Otherwise allocate a new vector
self.vec = np.zeros((dim, 1))
# Build views of vector
def vec_to_mat(vec, dim, type, t):
if type == "r":
# Real vector
return vec[t : t + dim]
elif type == "s":
# Symmetric matrix
n_k = int(np.sqrt(dim))
return vec[t : t + dim].reshape((n_k, n_k))
elif type == "h":
# Hermitian matrix
n_k = int(np.sqrt(dim // 2))
return (
vec[t : t + dim]
.reshape((-1, 2))
.view(dtype=np.complex128)
.reshape(n_k, n_k)
)
self.vecs = []
self.mats = []
t = 0
for dim_k, type_k in zip(dims, types):
self.vecs.append(self.vec[t : t + np.sum(dim_k)])
if isinstance(type_k, list):
mats_k = []
for dim_k_j, type_k_j in zip(dim_k, type_k):
mats_k.append(vec_to_mat(self.vec, dim_k_j, type_k_j, t))
t += dim_k_j
self.mats.append(mats_k)
else:
self.mats.append(vec_to_mat(self.vec, dim_k, type_k, t))
t += dim_k
def __getitem__(self, key):
return self.mats[key]