Source code for qics.quantum.entropy

# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi

# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics

import numpy as np


[docs] def entropy(x): r"""Computes either the classical (Shannon) entropy .. math:: H(x) = -\sum_{i=1}^n x_i \log(x_i), for nonnegative vector :math:`x`, or the quantum (von Neumann) entropy .. math:: S(X) = -\text{tr}[X \log(X)], for positive semidefinite matrix :math:`X`. Parameters ---------- x : :class:`~numpy.ndarray` If this is a nonnegative array of size ``(n,)`` or ``(n, 1)``, we compute the classical entropy of :math:`x`. If this is a symmetric or Hermitian positive semidefinite array of size ``(n, n)``, then we compute the quantum entropy of :math:`X` Returns ------- :obj:`float` Classical entropy of :math:`x` or quantum entropy of :math:`X`. """ if x.size > 1 and len(x.shape) == 2 and x.shape[0] == x.shape[1]: eig = np.linalg.eigvalsh(x) return entropy(eig) x = x[x > 0] return -sum(x * np.log(x))
[docs] def purify(X): r"""Returns a purification of a quantum state :math:`X`. If :math:`X` has spectral decomposition .. math:: X = \sum_{i=1}^n \lambda_i | v_i \rangle\langle v_i |, then the purification is :math:`| \psi \rangle\langle \psi |` where .. math:: | \psi \rangle = \sum_{i=1}^n \sqrt{\lambda_i} (| v_i \rangle \otimes | v_i \rangle). Parameters ---------- X : :class:`~numpy.ndarray` Symmetric or Hermitian array of size ``(n, n)`` representing the matrix :math:`X` we want to find the purification of. Returns ------- :class:`~numpy.ndarray` Symmetric or Hermitian array of size ``(n*n, n*n)`` representing the purification of :math:`X`. """ n = X.shape[0] D, U = np.linalg.eigh(X) vec = np.zeros((n * n, 1), dtype=X.dtype) for i in range(n): vec += np.sqrt(max(0.0, D[i])) * np.kron(U[:, [i]], U[:, [i]]) return vec @ vec.conj().T