Source code for qics.quantum.operator

# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi

# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics

import numpy as np


[docs] def p_tr(mat, dims, sys): r"""Performs the partial trace on a multipartite state, e.g., for a bipartite state with ``dims=(n0, n1)``, this is the unique linear map satisfying .. math:: X \otimes Y \mapsto \text{tr}[X] Y, if ``sys=0``, or .. math:: X \otimes Y \mapsto \text{tr}[Y] X, if ``sys=1``, for all :math:`X,Y\in\mathbb{H}^n`. Parameters ---------- mat : :class:`~numpy.ndarray` Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a matrix defined on :math:`k` subsystems which we want to take the partial trace of. dims : :obj:`tuple` of :obj:`int` The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems. sys : :obj:`int` or :obj:`tuple` of :obj:`int` Which of the :math:`k` subsystems to trace out. Can define multiple subsystems to trace out. Returns ------- :class:`~numpy.ndarray` The resulting matrix after taking the partial trace. Has dimension ``(n0*n1*...*nk-1 / nx, n0*n1*...*nk-1 / nx)`` where ``nx`` is the product of the dimensions of the subsystems that have been traced out. See also -------- i_kr : The Kronecker product with the identity matrix Notes ----- This is the adjoint operator of the Kronecker product with the identity matrix. """ if isinstance(sys, int): sys = [ sys, ] if isinstance(sys, tuple) or isinstance(sys, set): sys = list(sys) not_sys = list(set(range(len(dims))) - set(sys)) # Sort subsystems so the ones we want to partial trace are at the front reordered_dims = sys + not_sys reordered_dims = reordered_dims + [k + len(dims) for k in reordered_dims] tr_dim = np.prod([dims[k] for k in sys], dtype=int) new_dim = np.prod([dims[k] for k in not_sys], dtype=int) temp = np.transpose(mat.reshape(*dims, *dims), reordered_dims) temp = temp.reshape(tr_dim, new_dim, tr_dim, new_dim) return np.trace(temp, axis1=0, axis2=2)
def p_tr_multi(out, mat, dims, sys): r"""Performs the partial trace on a list of bipartite matrices. Parameters ---------- out : :class:`~numpy.ndarray` Preallocated list of matrices to store the output. Has dimension ``(p, n0*n1*...*nk-1 / ni, n0*n1*...*nk-1 / ni)`` where ``i`` is the system being traced out. mat : :class:`~numpy.ndarray` Input ``(p, n0*n1*...*nk-1, n0*n1*...*nk-1)`` list of matrices to perform the partial trace on. dims : tuple[int] The dimensions ``(n0, n1, ..., nk)`` of the ``p`` subsystems. sys : int or tuple(int) Which systems to trace out. """ if isinstance(sys, int): sys = [ sys, ] if isinstance(sys, tuple): sys = list(sys) not_sys = list(set(range(len(dims))) - set(sys)) # Sort subsystems so the ones we want to partial trace are at the front reordered_dims = sys + not_sys reordered_dims = ( [0] + [k + 1 for k in reordered_dims] + [k + 1 + len(dims) for k in reordered_dims] ) tr_dim = np.prod([dims[k] for k in sys], dtype=int) new_dim = np.prod([dims[k] for k in not_sys], dtype=int) temp = np.transpose(mat.reshape(-1, *dims, *dims), reordered_dims) temp = temp.reshape(-1, tr_dim, new_dim, tr_dim, new_dim) np.trace(temp, axis1=1, axis2=3, out=out) return out
[docs] def i_kr(mat, dims, sys): r"""Performs Kronecker product between the identity matrix and a given matrix, e.g., if we consider a bipartite setup with ``dims=(n0, n1)``, this is the unique linear map satisfying .. math:: X \mapsto \mathbb{I} \otimes X, if ``sys=0``, or .. math:: X \mapsto X \otimes \mathbb{I}, if ``sys=1``, for all :math:`X\in\mathbb{H}^n`. Parameters ---------- mat : :class:`~numpy.ndarray` Array of size ``(n0*n1*...*nk-1 / nx, n0*n1*...*nk-1 / nx)`` to apply the Kronecker product to, where ``nx`` is the product of the dimensions of the subsystems specified by ``sys``. dims : :obj:`tuple` of :obj:`int` The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems which the output is defined on. sys : :obj:`int` or :obj:`tuple` of :obj:`int` Which of the :math:`k` subsystems to apply the Kronecker product to. Can define multiple subsystems. Returns ------- :class:`~numpy.ndarray` The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after performing the Kronecker product. See also -------- p_tr : The partial trace operator Notes ----- This is the adjoint operator of the partial trace. """ if isinstance(sys, int): sys = [ sys, ] if isinstance(sys, tuple): sys = list(sys) not_sys = list(set(range(len(dims))) - set(sys)) # Sort subsystems so the ones we want to partial trace are at the front reordered_dims = ( sys + [k + len(dims) for k in sys] + not_sys + [k + len(dims) for k in not_sys] ) N = np.prod(dims) new_dims = [dims[k] for k in not_sys] if len(not_sys) > 0 else [1] out = np.zeros((N, N), dtype=mat.dtype) out_view = np.transpose(out.reshape(*dims, *dims), reordered_dims) r = np.meshgrid(*[range(dims[k]) for k in sys]) r = list(np.array(r).reshape(len(sys), -1)) out_view[tuple(r + r)] = mat.reshape(*new_dims, *new_dims) return out
def i_kr_multi(out, mat, dims, sys): r"""Performs Kronecker product between the indentity matrix and a given list of matrices. Parameters ---------- out : :class:`~numpy.ndarray` Preallocated ``(p, n0*n1*...*nk-1, n0*n1*...*nk-1)`` list of matrices to store the output. mat : :class:`~numpy.ndarray` Input matrix to perform the partial trace on. Has dimension ``(p, n0*n1*...*nk-1 / ni, n0*n1*...*nk-1 / ni)`` where ``i`` is the system being traced out. dim : tuple[int] The dimensions ``(n0, n1, ..., nk)`` of the subsystems. sys : int or tuple(int) Which system to Kroneker product should act on. """ if isinstance(sys, int): sys = [ sys, ] if isinstance(sys, tuple): sys = list(sys) not_sys = list(set(range(len(dims))) - set(sys)) # Sort subsystems so the ones we want to partial trace are at the front reordered_dims = [k + 1 for k in sys] reordered_dims += [k + 1 + len(dims) for k in sys] reordered_dims += [0] reordered_dims += [k + 1 for k in not_sys] reordered_dims += [k + 1 + len(dims) for k in not_sys] new_dims = [dims[k] for k in not_sys] out.fill(0.0) out_view = np.transpose(out.reshape(-1, *dims, *dims), reordered_dims) r = np.meshgrid(*[range(dims[k]) for k in sys]) r = list(np.array(r).reshape(len(sys), -1)) out_view[tuple(r + r)] = mat.reshape(-1, *new_dims, *new_dims) return out
[docs] def partial_transpose(mat, dims, sys): r"""Performs the partial transpose on a multipartite matrix, e.g., for a bipartite state with ``dims=(n0, n1)``, the unique linear map satisfying .. math:: X \otimes Y \mapsto X^\top \otimes Y, if ``sys=0``, or .. math:: X \otimes Y \mapsto X \otimes Y^\top, if ``sys=1``, for all :math:`X,Y\in\mathbb{C}^{n\times n}`. Parameters ---------- mat : :class:`~numpy.ndarray` Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a matrix defined on :math:`k` subsystems which we want to take the partial transpose of. dims : :obj:`tuple` of :obj:`int` The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems. sys : :obj:`int` Which of the :math:`k` subsystems to transpose. Returns ------- :class:`~numpy.ndarray` The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after performing the partial transpose. """ N = np.prod(dims) temp = mat.reshape(*dims, *dims) temp = np.swapaxes(temp, sys, sys + len(dims)) return temp.reshape(N, N)
[docs] def swap(mat, dims, sys1, sys2): r"""Swaps two systems of a multipartite quantum state, e.g., for a bipartite state with ``dims=(n0, n1)``, it is the unique linear maps satisfying .. math:: X \otimes Y \mapsto Y \otimes X, for all :math:`X,Y\in\mathbb{H}^{n}`. Parameters ---------- mat : :class:`~numpy.ndarray` Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a matrix defined on :math:`k` subsystems which we want to swap the subsystems of. dims : :obj:`tuple` of :obj:`int` The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems. sys1 : :obj:`int` First of the :math:`k` subsystems to swap. sys2 : :obj:`int` Second of the :math:`k` subsystems to swap Returns ------- :class:`~numpy.ndarray` The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after performing the swap operator. """ N = np.prod(dims) temp = mat.reshape(*dims, *dims) temp = np.swapaxes(temp, sys1, sys2) temp = np.swapaxes(temp, len(dims) + sys1, len(dims) + sys2) return temp.reshape(N, N)