# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
[docs]
def p_tr(mat, dims, sys):
r"""Performs the partial trace on a multipartite state, e.g., for
a bipartite state with ``dims=(n0, n1)``, this is the unique linear map
satisfying
.. math::
X \otimes Y \mapsto \text{tr}[X] Y,
if ``sys=0``, or
.. math::
X \otimes Y \mapsto \text{tr}[Y] X,
if ``sys=1``, for all :math:`X,Y\in\mathbb{H}^n`.
Parameters
----------
mat : :class:`~numpy.ndarray`
Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a
matrix defined on :math:`k` subsystems which we want to take the
partial trace of.
dims : :obj:`tuple` of :obj:`int`
The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems.
sys : :obj:`int` or :obj:`tuple` of :obj:`int`
Which of the :math:`k` subsystems to trace out. Can define multiple
subsystems to trace out.
Returns
-------
:class:`~numpy.ndarray`
The resulting matrix after taking the partial trace. Has dimension
``(n0*n1*...*nk-1 / nx, n0*n1*...*nk-1 / nx)`` where ``nx`` is the
product of the dimensions of the subsystems that have been traced
out.
See also
--------
i_kr : The Kronecker product with the identity matrix
Notes
-----
This is the adjoint operator of the Kronecker product with the
identity matrix.
"""
if isinstance(sys, int):
sys = [
sys,
]
if isinstance(sys, tuple) or isinstance(sys, set):
sys = list(sys)
not_sys = list(set(range(len(dims))) - set(sys))
# Sort subsystems so the ones we want to partial trace are at the front
reordered_dims = sys + not_sys
reordered_dims = reordered_dims + [k + len(dims) for k in reordered_dims]
tr_dim = np.prod([dims[k] for k in sys], dtype=int)
new_dim = np.prod([dims[k] for k in not_sys], dtype=int)
temp = np.transpose(mat.reshape(*dims, *dims), reordered_dims)
temp = temp.reshape(tr_dim, new_dim, tr_dim, new_dim)
return np.trace(temp, axis1=0, axis2=2)
def p_tr_multi(out, mat, dims, sys):
r"""Performs the partial trace on a list of bipartite matrices.
Parameters
----------
out : :class:`~numpy.ndarray`
Preallocated list of matrices to store the output. Has dimension
``(p, n0*n1*...*nk-1 / ni, n0*n1*...*nk-1 / ni)`` where ``i`` is
the system being traced out.
mat : :class:`~numpy.ndarray`
Input ``(p, n0*n1*...*nk-1, n0*n1*...*nk-1)`` list of matrices to
perform the partial trace on.
dims : tuple[int]
The dimensions ``(n0, n1, ..., nk)`` of the ``p`` subsystems.
sys : int or tuple(int)
Which systems to trace out.
"""
if isinstance(sys, int):
sys = [
sys,
]
if isinstance(sys, tuple):
sys = list(sys)
not_sys = list(set(range(len(dims))) - set(sys))
# Sort subsystems so the ones we want to partial trace are at the front
reordered_dims = sys + not_sys
reordered_dims = (
[0]
+ [k + 1 for k in reordered_dims]
+ [k + 1 + len(dims) for k in reordered_dims]
)
tr_dim = np.prod([dims[k] for k in sys], dtype=int)
new_dim = np.prod([dims[k] for k in not_sys], dtype=int)
temp = np.transpose(mat.reshape(-1, *dims, *dims), reordered_dims)
temp = temp.reshape(-1, tr_dim, new_dim, tr_dim, new_dim)
np.trace(temp, axis1=1, axis2=3, out=out)
return out
[docs]
def i_kr(mat, dims, sys):
r"""Performs Kronecker product between the identity matrix and a given
matrix, e.g., if we consider a bipartite setup with ``dims=(n0, n1)``,
this is the unique linear map satisfying
.. math::
X \mapsto \mathbb{I} \otimes X,
if ``sys=0``, or
.. math::
X \mapsto X \otimes \mathbb{I},
if ``sys=1``, for all :math:`X\in\mathbb{H}^n`.
Parameters
----------
mat : :class:`~numpy.ndarray`
Array of size ``(n0*n1*...*nk-1 / nx, n0*n1*...*nk-1 / nx)`` to
apply the Kronecker product to, where ``nx`` is the product of the
dimensions of the subsystems specified by ``sys``.
dims : :obj:`tuple` of :obj:`int`
The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems
which the output is defined on.
sys : :obj:`int` or :obj:`tuple` of :obj:`int`
Which of the :math:`k` subsystems to apply the Kronecker product
to. Can define multiple subsystems.
Returns
-------
:class:`~numpy.ndarray`
The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after
performing the Kronecker product.
See also
--------
p_tr : The partial trace operator
Notes
-----
This is the adjoint operator of the partial trace.
"""
if isinstance(sys, int):
sys = [
sys,
]
if isinstance(sys, tuple):
sys = list(sys)
not_sys = list(set(range(len(dims))) - set(sys))
# Sort subsystems so the ones we want to partial trace are at the front
reordered_dims = (
sys + [k + len(dims) for k in sys] + not_sys + [k + len(dims) for k in not_sys]
)
N = np.prod(dims)
new_dims = [dims[k] for k in not_sys] if len(not_sys) > 0 else [1]
out = np.zeros((N, N), dtype=mat.dtype)
out_view = np.transpose(out.reshape(*dims, *dims), reordered_dims)
r = np.meshgrid(*[range(dims[k]) for k in sys])
r = list(np.array(r).reshape(len(sys), -1))
out_view[tuple(r + r)] = mat.reshape(*new_dims, *new_dims)
return out
def i_kr_multi(out, mat, dims, sys):
r"""Performs Kronecker product between the indentity matrix and a given
list of matrices.
Parameters
----------
out : :class:`~numpy.ndarray`
Preallocated ``(p, n0*n1*...*nk-1, n0*n1*...*nk-1)`` list of
matrices to store the output.
mat : :class:`~numpy.ndarray`
Input matrix to perform the partial trace on. Has dimension
``(p, n0*n1*...*nk-1 / ni, n0*n1*...*nk-1 / ni)`` where ``i`` is
the system being traced out.
dim : tuple[int]
The dimensions ``(n0, n1, ..., nk)`` of the subsystems.
sys : int or tuple(int)
Which system to Kroneker product should act on.
"""
if isinstance(sys, int):
sys = [
sys,
]
if isinstance(sys, tuple):
sys = list(sys)
not_sys = list(set(range(len(dims))) - set(sys))
# Sort subsystems so the ones we want to partial trace are at the front
reordered_dims = [k + 1 for k in sys]
reordered_dims += [k + 1 + len(dims) for k in sys]
reordered_dims += [0]
reordered_dims += [k + 1 for k in not_sys]
reordered_dims += [k + 1 + len(dims) for k in not_sys]
new_dims = [dims[k] for k in not_sys]
out.fill(0.0)
out_view = np.transpose(out.reshape(-1, *dims, *dims), reordered_dims)
r = np.meshgrid(*[range(dims[k]) for k in sys])
r = list(np.array(r).reshape(len(sys), -1))
out_view[tuple(r + r)] = mat.reshape(-1, *new_dims, *new_dims)
return out
[docs]
def partial_transpose(mat, dims, sys):
r"""Performs the partial transpose on a multipartite matrix, e.g., for
a bipartite state with ``dims=(n0, n1)``, the unique linear map
satisfying
.. math::
X \otimes Y \mapsto X^\top \otimes Y,
if ``sys=0``, or
.. math::
X \otimes Y \mapsto X \otimes Y^\top,
if ``sys=1``, for all :math:`X,Y\in\mathbb{C}^{n\times n}`.
Parameters
----------
mat : :class:`~numpy.ndarray`
Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a
matrix defined on :math:`k` subsystems which we want to take the
partial transpose of.
dims : :obj:`tuple` of :obj:`int`
The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems.
sys : :obj:`int`
Which of the :math:`k` subsystems to transpose.
Returns
-------
:class:`~numpy.ndarray`
The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after
performing the partial transpose.
"""
N = np.prod(dims)
temp = mat.reshape(*dims, *dims)
temp = np.swapaxes(temp, sys, sys + len(dims))
return temp.reshape(N, N)
[docs]
def swap(mat, dims, sys1, sys2):
r"""Swaps two systems of a multipartite quantum state, e.g., for a
bipartite state with ``dims=(n0, n1)``, it is the unique linear maps
satisfying
.. math::
X \otimes Y \mapsto Y \otimes X,
for all :math:`X,Y\in\mathbb{H}^{n}`.
Parameters
----------
mat : :class:`~numpy.ndarray`
Array of size ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` represnting a
matrix defined on :math:`k` subsystems which we want to swap the
subsystems of.
dims : :obj:`tuple` of :obj:`int`
The dimensions ``(n0, n1, ..., nk-1)`` of the :math:`k` subsystems.
sys1 : :obj:`int`
First of the :math:`k` subsystems to swap.
sys2 : :obj:`int`
Second of the :math:`k` subsystems to swap
Returns
-------
:class:`~numpy.ndarray`
The resulting ``(n0*n1*...*nk-1, n0*n1*...*nk-1)`` matrix after
performing the swap operator.
"""
N = np.prod(dims)
temp = mat.reshape(*dims, *dims)
temp = np.swapaxes(temp, sys1, sys2)
temp = np.swapaxes(temp, len(dims) + sys1, len(dims) + sys2)
return temp.reshape(N, N)