# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import numpy as np
import scipy as sp
from qics.quantum import i_kr, p_tr
[docs]
def density_matrix(n, iscomplex=False):
r"""Generate a random density matrix, i.e., positive semidefinite
matrix :math:`X\in\mathbb{H}^n` satisfying :math:`\text{tr}[X] = 1`,
uniformly on the on the Haar measure.
Parameters
----------
n : :obj:`int`
Dimension of random density matrix :math:`X`.
iscomplex : :obj:`bool`, optional
Whether the matrix is real (``False``) or complex (``True``).
The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Random density matrix of dimension ``(n, n)``.
"""
if iscomplex:
X = np.random.normal(size=(n, n)) + np.random.normal(size=(n, n)) * 1j
else:
X = np.random.normal(size=(n, n))
rho = X @ X.conj().T
return rho / np.trace(rho)
[docs]
def pure_density_matrix(n, iscomplex=False):
r"""Generate a random pure density matrix i.e., rank 1 positive
semidefinite matrix :math:`X\in\mathbb{H}^n` satisfying
:math:`\text{tr}[X] = 1`.
Parameters
----------
n : :obj:`int`
Dimension of random pure density matrix :math:`X`.
iscomplex : :obj:`bool`, optional
Whether the matrix is real (``False``) or complex (``True``).
The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Random pure density matrix of dimension ``(n, n)``.
Notes
-----
See [1]_ for additional details.
.. [1] Khatri, S. (2020) "Random Pure States".
https://sumeetkhatri.com/wp-content/uploads/2020/05/random_pure_states.pdf
"""
if iscomplex:
psi = np.random.normal(size=(n)) + np.random.normal(size=(n)) * 1j
else:
psi = np.random.normal(size=(n))
psi /= np.linalg.norm(psi)
rho = np.outer(psi, psi.conj())
rho = (rho + rho.conj().T) * 0.5
return rho
[docs]
def unitary(n, iscomplex=False):
r"""Generate a random unitary matrix, i.e., matrix :math:`U` satisfying
:math:`U^\dagger U = UU^\dagger = \mathbb{I}`, uniformly distributed on
Haar measure.
Parameters
----------
n : :obj:`int`
Dimension of random unitary matrix :math:`U`.
iscomplex : :obj:`bool`, optional
Whether the unitary matrix is real (``False``) or complex
(``True``). The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Random unitary matrix of dimension ``(n, n)``.
Notes
-----
See [1]_ for additional details.
.. [1] Meckes, E. (2013) "Random Unitary Matrices and Friends".
https://case.edu/artsci/math/esmeckes/Meckes_SAMSI_Lecture2.pdf
"""
if iscomplex:
X = np.random.normal(size=(n, n)) + np.random.normal(size=(n, n)) * 1j
else:
X = np.random.normal(size=(n, n))
U, _ = np.linalg.qr(X)
return U
[docs]
def stinespring_operator(nin, nout=None, nenv=None, iscomplex=False):
r"""Generate a random Stinespring operator, i.e., isometry :math:`V`
corresponding to a quantum channel :math:`\mathcal{N}(X)=
\text{tr}_E[VXV^\dagger]`, uniformly distributed on Hilbert-Schmidt
measure.
Parameters
----------
nin : :obj:`int`
Dimension of the input system.
nout : :obj:`int`, optional
Dimension of the output system. The default is ``nin``.
nenv : :obj:`int`, optional
Dimension of the environment system. The default is ``nout``.
iscomplex : :obj:`bool`, optional
Whether the Stinespring operator is real (``False``) or complex
(``True``). The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Random Stinespring operator of dimension ``(nout*nenv, nin)``
Notes
-----
See [1]_ for additional details.
.. [1] Kukulski, Ryszard, et al. "Generating random quantum channels."
Journal of Mathematical Physics 62.6 (2021).
"""
nout = nout if (nout is not None) else nin
nenv = nenv if (nenv is not None) else nout
U = unitary(nout * nenv, iscomplex=iscomplex)
return U[:, :nin]
[docs]
def degradable_channel(nin, nout=None, nenv=None, iscomplex=False):
r"""Generate random degradable channel :math:`\mathcal{N}`, represented
as a Stinespring isometry :math:`V` such that
.. math::
\mathcal{N}(X) = \text{tr}_2[V X V^\dagger]
Also returns Stinespring isometry :math:`W` corresponding to the
complementary channel :math:`\mathcal{N}_\text{c}` such that
.. math::
\mathcal{N}_\text{c}(X) = \text{tr}_1[V X V^\dagger]
= \text{tr}_2[W \mathcal{N}(X) W^\dagger].
Parameters
----------
nin : :obj:`int`
Dimension of the input system.
nout : :obj:`int`, optional
Dimension of the output system. The default is ``nin``.
nenv : :obj:`int`, optional
Dimension of the environment system. The default is ``nout``.
iscomplex : :obj:`bool`, optional
Whether the Stinespring operators are real (``False``) or complex
(``True``). The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Stinespring operator :math:`V` of dimension ``(nout*nenv, nin)``
corresponding to :math:`\mathcal{N}(X)=\text{tr}_2[V X V^\dagger]`.
:class:`~numpy.ndarray`
Stinespring operator :math:`W` of dimension ``(nin*nenv, nout)``
corresponding to :math:`\mathcal{N}_\text{c}(X)=
\text{tr}_2[W \mathcal{N}(X) W^\dagger]`.
Notes
-----
See [1]_ for additional details.
.. [1] Cubitt, Toby S., Mary Beth Ruskai, and Graeme Smith.
"The structure of degradable quantum channels."
Journal of Mathematical Physics 49.10 (2008).
"""
nout = nout if (nout is not None) else nin
nenv = nenv if (nenv is not None) else nout
assert nenv <= nin
dtype = np.complex128 if iscomplex else np.float64
V = np.zeros((nout * nenv, nin), dtype=dtype) # N Stinespring isometry
W = np.zeros((nin * nenv, nout), dtype=dtype) # Ξ Stinespring isometry
U = unitary(nin, iscomplex=iscomplex)
for k in range(nout):
# Generate random vector
if iscomplex:
v = np.random.normal(size=(nenv, 1)) + np.random.normal(size=(nenv, 1)) * 1j
else:
v = np.random.normal(size=(nenv, 1))
v /= np.linalg.norm(v)
# Make Kraus operator and insert into N Stinespring isometry
K = v @ U[[k], :]
V[k * nenv : (k + 1) * nenv, :] = K
# Make Kraus operator and insert into Ξ Stinespring isometry
W[k::nin, [k]] = v
return V, W
[docs]
def choi_operator(nin, nout=None, M=None, iscomplex=False):
r"""Generate a random Choi operator :math:`\mathcal{J}_\mathcal{N}`
representing a quantum channel :math:`\mathcal{N}`, i.e.,
.. math::
\mathcal{J}_\mathcal{N} = \sum_{i,j}^n
\mathcal{N}(| i \rangle\langle j |) \otimes | i \rangle\langle j |,
uniformly distributed on the Hilbert-Schmidt measure.
Parameters
----------
nin : :obj:`int`
Dimension of the input system.
nout : :obj:`int`, optional
Dimension of the output system. The default is ``nin``.
M : :obj:`int`, optional
Dimension used to determine the rank of the random Choi operator.
The default is ``nout*nin``.
iscomplex : :obj:`bool`, optional
Whether the Choi operator is real (``False``) or complex
(``True``). The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
Random Choi operator corresponding to matrix of size
``(nout*nin, nout*nin)``.
Notes
-----
See [1]_ for additional details.
.. [1] Kukulski, Ryszard, et al. "Generating random quantum channels."
Journal of Mathematical Physics 62.6 (2021).
"""
nout = nout if (nout is not None) else nin
M = M if (M is not None) else nout * nin
# Sample random Wishart ensemble
nio = nin * nout
if iscomplex:
G = np.random.normal(size=(nio, M)) + np.random.normal(size=(nio, M)) * 1j
G *= np.sqrt(2.0)
else:
G = np.random.normal(size=(nio, M))
W = G @ G.conj().T
# Obtain normalization required for trace preserving property
H = p_tr(W, (nout, nin), 0)
I_H_irt2 = i_kr(sp.linalg.sqrtm(np.linalg.inv(H)), (nout, nin), 0)
# Return normalized Choi matrix
J = I_H_irt2 @ W @ I_H_irt2
return 0.5 * (J + J.conj().T)