Source code for qics.quantum.random

# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi

# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics

import numpy as np
import scipy as sp

from qics.quantum import i_kr, p_tr


[docs] def density_matrix(n, iscomplex=False): r"""Generate a random density matrix, i.e., positive semidefinite matrix :math:`X\in\mathbb{H}^n` satisfying :math:`\text{tr}[X] = 1`, uniformly on the on the Haar measure. Parameters ---------- n : :obj:`int` Dimension of random density matrix :math:`X`. iscomplex : :obj:`bool`, optional Whether the matrix is real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Random density matrix of dimension ``(n, n)``. """ if iscomplex: X = np.random.normal(size=(n, n)) + np.random.normal(size=(n, n)) * 1j else: X = np.random.normal(size=(n, n)) rho = X @ X.conj().T return rho / np.trace(rho)
[docs] def pure_density_matrix(n, iscomplex=False): r"""Generate a random pure density matrix i.e., rank 1 positive semidefinite matrix :math:`X\in\mathbb{H}^n` satisfying :math:`\text{tr}[X] = 1`. Parameters ---------- n : :obj:`int` Dimension of random pure density matrix :math:`X`. iscomplex : :obj:`bool`, optional Whether the matrix is real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Random pure density matrix of dimension ``(n, n)``. Notes ----- See [1]_ for additional details. .. [1] Khatri, S. (2020) "Random Pure States". https://sumeetkhatri.com/wp-content/uploads/2020/05/random_pure_states.pdf """ if iscomplex: psi = np.random.normal(size=(n)) + np.random.normal(size=(n)) * 1j else: psi = np.random.normal(size=(n)) psi /= np.linalg.norm(psi) rho = np.outer(psi, psi.conj()) rho = (rho + rho.conj().T) * 0.5 return rho
[docs] def unitary(n, iscomplex=False): r"""Generate a random unitary matrix, i.e., matrix :math:`U` satisfying :math:`U^\dagger U = UU^\dagger = \mathbb{I}`, uniformly distributed on Haar measure. Parameters ---------- n : :obj:`int` Dimension of random unitary matrix :math:`U`. iscomplex : :obj:`bool`, optional Whether the unitary matrix is real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Random unitary matrix of dimension ``(n, n)``. Notes ----- See [1]_ for additional details. .. [1] Meckes, E. (2013) "Random Unitary Matrices and Friends". https://case.edu/artsci/math/esmeckes/Meckes_SAMSI_Lecture2.pdf """ if iscomplex: X = np.random.normal(size=(n, n)) + np.random.normal(size=(n, n)) * 1j else: X = np.random.normal(size=(n, n)) U, _ = np.linalg.qr(X) return U
[docs] def stinespring_operator(nin, nout=None, nenv=None, iscomplex=False): r"""Generate a random Stinespring operator, i.e., isometry :math:`V` corresponding to a quantum channel :math:`\mathcal{N}(X)= \text{tr}_E[VXV^\dagger]`, uniformly distributed on Hilbert-Schmidt measure. Parameters ---------- nin : :obj:`int` Dimension of the input system. nout : :obj:`int`, optional Dimension of the output system. The default is ``nin``. nenv : :obj:`int`, optional Dimension of the environment system. The default is ``nout``. iscomplex : :obj:`bool`, optional Whether the Stinespring operator is real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Random Stinespring operator of dimension ``(nout*nenv, nin)`` Notes ----- See [1]_ for additional details. .. [1] Kukulski, Ryszard, et al. "Generating random quantum channels." Journal of Mathematical Physics 62.6 (2021). """ nout = nout if (nout is not None) else nin nenv = nenv if (nenv is not None) else nout U = unitary(nout * nenv, iscomplex=iscomplex) return U[:, :nin]
[docs] def degradable_channel(nin, nout=None, nenv=None, iscomplex=False): r"""Generate random degradable channel :math:`\mathcal{N}`, represented as a Stinespring isometry :math:`V` such that .. math:: \mathcal{N}(X) = \text{tr}_2[V X V^\dagger] Also returns Stinespring isometry :math:`W` corresponding to the complementary channel :math:`\mathcal{N}_\text{c}` such that .. math:: \mathcal{N}_\text{c}(X) = \text{tr}_1[V X V^\dagger] = \text{tr}_2[W \mathcal{N}(X) W^\dagger]. Parameters ---------- nin : :obj:`int` Dimension of the input system. nout : :obj:`int`, optional Dimension of the output system. The default is ``nin``. nenv : :obj:`int`, optional Dimension of the environment system. The default is ``nout``. iscomplex : :obj:`bool`, optional Whether the Stinespring operators are real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Stinespring operator :math:`V` of dimension ``(nout*nenv, nin)`` corresponding to :math:`\mathcal{N}(X)=\text{tr}_2[V X V^\dagger]`. :class:`~numpy.ndarray` Stinespring operator :math:`W` of dimension ``(nin*nenv, nout)`` corresponding to :math:`\mathcal{N}_\text{c}(X)= \text{tr}_2[W \mathcal{N}(X) W^\dagger]`. Notes ----- See [1]_ for additional details. .. [1] Cubitt, Toby S., Mary Beth Ruskai, and Graeme Smith. "The structure of degradable quantum channels." Journal of Mathematical Physics 49.10 (2008). """ nout = nout if (nout is not None) else nin nenv = nenv if (nenv is not None) else nout assert nenv <= nin dtype = np.complex128 if iscomplex else np.float64 V = np.zeros((nout * nenv, nin), dtype=dtype) # N Stinespring isometry W = np.zeros((nin * nenv, nout), dtype=dtype) # Ξ Stinespring isometry U = unitary(nin, iscomplex=iscomplex) for k in range(nout): # Generate random vector if iscomplex: v = np.random.normal(size=(nenv, 1)) + np.random.normal(size=(nenv, 1)) * 1j else: v = np.random.normal(size=(nenv, 1)) v /= np.linalg.norm(v) # Make Kraus operator and insert into N Stinespring isometry K = v @ U[[k], :] V[k * nenv : (k + 1) * nenv, :] = K # Make Kraus operator and insert into Ξ Stinespring isometry W[k::nin, [k]] = v return V, W
[docs] def choi_operator(nin, nout=None, M=None, iscomplex=False): r"""Generate a random Choi operator :math:`\mathcal{J}_\mathcal{N}` representing a quantum channel :math:`\mathcal{N}`, i.e., .. math:: \mathcal{J}_\mathcal{N} = \sum_{i,j}^n \mathcal{N}(| i \rangle\langle j |) \otimes | i \rangle\langle j |, uniformly distributed on the Hilbert-Schmidt measure. Parameters ---------- nin : :obj:`int` Dimension of the input system. nout : :obj:`int`, optional Dimension of the output system. The default is ``nin``. M : :obj:`int`, optional Dimension used to determine the rank of the random Choi operator. The default is ``nout*nin``. iscomplex : :obj:`bool`, optional Whether the Choi operator is real (``False``) or complex (``True``). The default is ``False``. Returns ------- :class:`~numpy.ndarray` Random Choi operator corresponding to matrix of size ``(nout*nin, nout*nin)``. Notes ----- See [1]_ for additional details. .. [1] Kukulski, Ryszard, et al. "Generating random quantum channels." Journal of Mathematical Physics 62.6 (2021). """ nout = nout if (nout is not None) else nin M = M if (M is not None) else nout * nin # Sample random Wishart ensemble nio = nin * nout if iscomplex: G = np.random.normal(size=(nio, M)) + np.random.normal(size=(nio, M)) * 1j G *= np.sqrt(2.0) else: G = np.random.normal(size=(nio, M)) W = G @ G.conj().T # Obtain normalization required for trace preserving property H = p_tr(W, (nout, nin), 0) I_H_irt2 = i_kr(sp.linalg.sqrtm(np.linalg.inv(H)), (nout, nin), 0) # Return normalized Choi matrix J = I_H_irt2 @ W @ I_H_irt2 return 0.5 * (J + J.conj().T)