# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import itertools
import math
import sys
import time
import numpy as np
import scipy as sp
from qics import __version__
from qics._stepper import KKTSolver, NonSymStepper, SymStepper
from qics._utils.linalg import is_full_col_rank, norm_inf
from qics.cones import (OpPerspecEpi, OpPerspecTr, QuantRelEntr, RenyiEntr,
SandRenyiEntr, SandQuasiEntr, QuasiEntr) # fmt: skip
from qics.point import Point
SLOW_CONES = (QuantRelEntr, OpPerspecEpi, OpPerspecTr, RenyiEntr, SandRenyiEntr,
QuasiEntr, SandQuasiEntr) # fmt: skip
SPINNER = itertools.cycle(["-", "/", "|", "\\"])
[docs]
class Solver:
r"""A class representing an instance of a solver, and is parameterized
by a conic program model and adjustable solver settings.
Parameters
----------
model : :class:`~qics.Model`
Representation of a given conic program.
max_iter : :obj:`int`, optional
Maximum number of solver iterations before terminating. The default
is ``100``.
max_time : :obj:`float`, optional
Maximum time elapsed, in seconds, before terminating. The default
is ``3600``.
tol_gap : :obj:`float`, optional
Stopping tolerance for (relative) optimality gap. The default is
``1e-8``.
tol_feas : :obj:`float`, optional
Stopping tolerance for (relative) primal and dual feasibility. The
default is ``1e-8``.
tol_infeas : :obj:`float`, optional
Tolerance for detecting infeasible problem. The default is
``1e-12``.
tol_ip : :obj:`float`, optional
Tolerance for detecting ill-posed problem. The default is
``1e-13``.
tol_near : :obj:`float`, optional
Allowable margin for certifying near optimality when solver is
stopped early. The default is ``1e3``.
verbose : {``0``, ``1``, ``2``, ``3``}, optional
Verbosity level of the solver, where
- ``0`` : No output.
- ``1`` : Only print problem and solution summary.
- ``2`` : Also print summary of the solver at each iteration.
- ``3`` : Also print summary of the stepper at each iteration.
The default is ``2``.
ir : :obj:`bool`, optional
Whether to use iterative refinement when solving the KKT system.
The default is ``True``.
toa : :obj:`bool`, optional
Whether to use third-order adjustments to improve the stepping
directions. The default is ``True``.
init_pnt : :class:`~qics.point.Point`, optional
Where to initialize the interior-point algorithm from. Variables
which contain :obj:`~numpy.nan` are flagged to be intialized using
the default initialization method. The default is ``None``, which
intializes all variables using the default method.
use_invhess : :obj:`bool`, optional
Whether or not to avoid using inverse Hessian product oracles by
solving a modified cone program with
:math:`G^{-1}(\mathcal{K})=\{ x : Gx \in \mathcal{K} \}`. By
default, this is ``False`` if :math:`G\neq-\mathbb{I}`, :math:`G`
is full column rank, and :math:`\mathcal{K}` mainly consists of
:class:`~qics.cones.QuantRelEntr`,
:class:`~qics.cones.OpPerspecEpi`, and
:class:`~qics.cones.OpPerspecTr` cones, and is ``True`` otherwise.
"""
def __init__(
self,
model,
max_iter=100,
max_time=3600,
tol_gap=1e-8,
tol_feas=1e-8,
tol_infeas=1e-12,
tol_ip=1e-13,
tol_near=1e3,
verbose=2,
ir=True,
toa=True,
init_pnt=None,
use_invhess=None,
):
# Basic solver options
self.max_iter = max_iter
self.max_time = max_time
self.verbose = verbose
self.tol_gap = tol_gap
self.tol_feas = tol_feas
self.tol_infeas = tol_infeas
self.tol_ip = tol_ip
self.tol_near = tol_near
# Slow progress options
self.small_step_tol = 0.005
self.consecutive_small_step_limit = 2
self.consecutive_small_steps = 0
# Avoiding inverse Hessian options
cones = model.cones
if use_invhess is None:
# Default decision tree for whether to avoid inverse Hessian oracles
q_slow_cones = sum([sum(K.dim) for K in cones if isinstance(K, SLOW_CONES)])
use_invhess = model.issymmetric or q_slow_cones / model.q <= 0.55 \
or not model.use_G or not is_full_col_rank(model.G) # fmt: skip
elif not use_invhess:
if not model.use_G:
raise Exception(
"Avoiding inverse Hessian oracles is not supported nor recommended "
"if G is easily invertible."
)
if not is_full_col_rank(model.G):
raise Exception(
"Avoiding inverse Hessian oracles is not supported when G is not "
"full column rank."
)
self.use_invhess = use_invhess
# Preprocess model
self.model = model
model._preprocess(use_invhess, init_pnt)
# Initialize steppers
kktsolver = KKTSolver(model, ir=ir, use_invhess=use_invhess)
if model.issymmetric:
self.stepper = SymStepper(kktsolver, model, toa=toa)
else:
self.stepper = NonSymStepper(kktsolver, model, toa=toa)
# Initialize points and process initial point
self.point = Point(model)
self.point_best = Point(model)
self.point.vec.fill(np.nan)
if init_pnt is not None:
n_orig, p_orig = model.n_orig, model.p_orig
self.point.x[:n_orig] = init_pnt.x * model.c_scale[:n_orig]
self.point.y[:p_orig] = init_pnt.y * model.b_scale[:p_orig]
self.point.z.vec[:] = init_pnt.z.vec * model.h_scale
self.point.s.vec[:] = init_pnt.s.vec * model.h_scale
self.point.tau[:] = init_pnt.tau
self.point.kap[:] = init_pnt.kap
return
[docs]
def solve(self):
r"""Run the primal-dual interior point solver for a given problem
model.
Returns
-------
:obj:`dict`
Dictionary which summarizes the solution of a conic program.
Contains the following keys.
- x_opt (:obj:`~numpy.ndarray`) : Optimal primal variable
:math:`x^*`.
- y_opt (:obj:`~numpy.ndarray`) : Optimal dual variable
:math:`y^*`.
- z_opt (:obj:`~qics.point.VecProduct`) : Optimal dual variable
:math:`z^*`.
- s_opt (:obj:`~qics.point.VecProduct`) : Optimal primal
variable :math:`s^*=h-Gx^*`.
- sol_status (:obj:`string`) : Solution status. Can either be:
- ``optimal`` : Primal-dual optimal solution reached
- ``pinfeas`` : Detected primal infeasibility
- ``dinfeas`` : Detected dual infeasibility
- ``near_optimal`` : Near primal-dual optimal solution
- ``near_pinfeas`` : Near primal infeasibility
- ``near_dinfeas`` : Near dual infeasibiltiy
- ``illposed`` : Problem is ill-posed
- ``unknown`` : Unknown solution status
- exit_status (:obj:`string`) : Solver exit status. Can either
be:
- ``solved`` : Terminated at desired tolerance
- ``max_iter`` : Exceeded maximum allowable iterations
- ``max_time`` : Exceeded maximum allowable time
- ``step_failure`` : Unable to take another step
- ``slow_progress``: Residuals are decreasing too slowly
- num_iter (:obj:`int`) : Number of solver iterations.
- solve_time (:obj:`float`) : Total time elapsed (in seconds).
- p_obj (:obj:`float`) : Optimal primal objective
:math:`c^\top x^*`.
- d_obj (:obj:`float`) : Optimal dual objective
:math:`-b^\top y^* - h^\top z^*`.
- opt_gap (:obj:`float`) : Relative optimality gap.
- p_feas (:obj:`float`) : Relative primal feasibility.
- d_feas (:obj:`float`) : Relative dual feasibiltiy.
"""
# Setup solver
self.setup_solver()
self.setup_point()
self.calc_mu()
self.get_gap_feas()
# Print header
if self.verbose:
self.print_title()
if self.verbose >= 2:
self.print_iter_heading()
self.print_iter()
else:
print()
sys.stdout.write("Running...")
# Run main solver loop
while True:
if self.step_and_check():
break
# Solver has termianted, perform final clean up
self.solve_time = time.time() - self.start_time
# If we didn't reach a solution, check if we are close to optimal
if self.exit_status != "solved":
self.copy_solver_data()
self.retrieve_best_data()
self.solution_status = "unknown"
# Check near optimality
if self.gap <= self.tol_gap * self.tol_near:
if self.x_feas <= self.tol_feas * self.tol_near:
if self.y_feas <= self.tol_feas * self.tol_near:
if self.z_feas <= self.tol_feas * self.tol_near:
self.solution_status = "near_optimal"
# Check near infeasibility
if self.x_infeas <= self.tol_infeas * self.tol_near:
self.solution_status = "near_pinfeas"
if self.y_infeas <= self.tol_infeas * self.tol_near:
if self.z_infeas <= self.tol_infeas * self.tol_near:
self.solution_status = "near_dinfeas"
if self.verbose:
self.print_solution()
# Scale variables back
x_opt = self.point.x / self.model.c_scale / self.point.tau
y_opt = self.point.y / self.model.b_scale / self.point.tau
if not self.use_invhess:
x_opt = (x_opt + self.model.x_offset)[: self.model.n_orig]
y_opt = y_opt[: self.model.p_orig]
z_opt = self.point.z
z_opt.vec[:] = z_opt.vec / self.model.h_scale / self.point.tau
s_opt = self.point.s
s_opt.vec[:] = s_opt.vec / self.model.h_scale / self.point.tau
return {
"x_opt": x_opt,
"y_opt": y_opt,
"z_opt": z_opt,
"s_opt": s_opt,
"sol_status": self.solution_status,
"exit_status": self.exit_status,
"num_iter": self.iter,
"solve_time": self.solve_time,
"p_obj": self.p_obj,
"d_obj": self.d_obj,
"opt_gap": self.gap,
"p_feas": max(self.y_feas, self.z_feas),
"d_feas": self.x_feas,
}
def step_and_check(self):
# ==============================================================
# Step
# ==============================================================
# Make a copy of current point before taking a step
self.copy_solver_data()
# Take a step
self.point, success, alpha = self.stepper.step(
self.model, self.point, self.res, self.mu, self.verbose
)
self.iter += 1
self.elapsed_time = time.time() - self.start_time
# Compute barrier parameter and residuals
self.calc_mu()
self.get_gap_feas()
# ==============================================================
# Print iteration status
# ==============================================================
if self.verbose >= 2:
self.print_iter()
elif self.verbose:
sys.stdout.write(next(SPINNER))
sys.stdout.flush()
sys.stdout.write("\b")
# ==============================================================
# Check termination criteria
# ==============================================================
# 1) Check optimality
if self.gap <= self.tol_gap:
if (
self.x_feas <= self.tol_feas
and self.y_feas <= self.tol_feas
and self.z_feas <= self.tol_feas
):
self.solution_status = "optimal"
self.exit_status = "solved"
return True
# 2) Check primal and dual infeasibility
if self.x_infeas <= self.tol_infeas:
self.solution_status = "pinfeas"
self.exit_status = "solved"
return True
if self.y_infeas <= self.tol_infeas and self.z_infeas <= self.tol_infeas:
self.solution_status = "dinfeas"
self.exit_status = "solved"
return True
# 3) Check ill-posedness
if self.point.tau < self.tol_infeas and self.point.kap < self.tol_infeas:
if self.illposed_res <= self.tol_ip:
self.solution_status = "illposed"
self.exit_status = "solved"
return True
# 4) Check if maximum iterations is exceeded
if self.iter >= self.max_iter:
self.exit_status = "max_iter"
return True
# 5) Check if maximum time is exceeded
if self.elapsed_time >= self.max_time:
self.exit_status = "max_time"
return True
# 6) Did the step fail or not
if not success:
self.exit_status = "step_failure"
return True
# 7) Check if progress is slow or degrading at high tolerance
if alpha <= self.small_step_tol:
self.consecutive_small_steps += 1
if self.consecutive_small_steps >= self.consecutive_small_step_limit:
self.exit_status = "slow_progress"
return True
else:
self.consecutive_small_steps = 0
return False
def setup_solver(self):
self.iter = 0
self.start_time = time.time()
self.elapsed_time = 0.0
model = self.model
self.c_max = norm_inf(model.c)
self.b_max = norm_inf(model.b)
self.h_max = norm_inf(model.h)
if self.verbose == 3:
if self.model.issymmetric:
self.printbar_size = 125
else:
self.printbar_size = 136
else:
self.printbar_size = 97
return
def setup_point(self):
model = self.model
if any(np.isnan(self.point.x)):
self.point.x.fill(0.0)
if any(np.isnan(self.point.y)):
self.point.y.fill(0.0)
for k, cone_k in enumerate(model.cones):
if any(np.isnan(self.point.s.vecs[k])):
cone_k.get_init_point(self.point.s[k])
else:
cone_k.set_point(self.point.s[k])
if not cone_k.get_feas():
raise ValueError("Initial primal variable s is infeasible.")
if any(np.isnan(self.point.z.vecs[k])):
cone_k.grad_ip(self.point.z[k])
self.point.z.vecs[k] *= -1
cone_k.set_dual(self.point.z[k])
if not cone_k.get_dual_feas():
raise ValueError("Initial dual variable z is infeasible.")
if any(np.isnan(self.point.tau)):
self.point.tau.fill(1.0)
if any(np.isnan(self.point.kap)):
self.point.kap.fill(1.0)
self.calc_mu()
if not math.isclose(self.mu, 1.0):
print(f"Initial mu is {self.mu} but should be 1")
return
def calc_mu(self):
s_inp_z = self.point.s.inp(self.point.z)
kap_inp_tau = self.point.tau[0, 0] * self.point.kap[0, 0]
self.mu = (s_inp_z + kap_inp_tau) / self.model.nu
return self.mu
def get_gap_feas(self):
model = self.model
c = self.model.c
b = self.model.b
h = self.model.h
x = self.point.x
y = self.point.y
z = self.point.z.vec
s = self.point.s.vec
tau = self.point.tau[0, 0]
kap = self.point.kap[0, 0]
self.kap_tau = kap / tau
# Get primal and dual objectives and optimality gap
p_obj_tau = (c.T @ x)[0, 0]
d_obj_tau = -(b.T @ y + h.T @ z)[0, 0]
self.p_obj = p_obj_tau / tau + self.model.offset
self.d_obj = d_obj_tau / tau + self.model.offset
gap1 = self.point.z.inp(self.point.s) / tau
gap2 = abs(p_obj_tau - d_obj_tau)
self.gap = min(gap1, gap2)
self.gap /= max(tau, min([abs(p_obj_tau), abs(d_obj_tau)]))
# Get primal and dual infeasibilities
self.x_res = model.A_T @ y
self.x_res += model.G_T @ z
self.x_res *= -1
self.y_res = model.A @ x
self.z_res = model.G @ x
self.z_res += s
norm_x_res = norm_inf(self.x_res)
norm_y_res = norm_inf(self.y_res)
norm_z_res = norm_inf(self.z_res)
self.x_infeas = norm_x_res / d_obj_tau if (d_obj_tau > 0) else np.inf
self.y_infeas = -norm_y_res / p_obj_tau if (p_obj_tau < 0) else np.inf
self.z_infeas = -norm_z_res / p_obj_tau if (p_obj_tau < 0) else np.inf
# Get ill posedness certificates
norm_xyzs = max(norm_inf(x), norm_inf(y), norm_inf(z), norm_inf(s))
if norm_xyzs > 0:
norm_xyz_res = max(norm_x_res, norm_y_res, norm_z_res)
self.illposed_res = norm_xyz_res / norm_xyzs
else:
self.illposed_res = np.inf
# Get primal and dual feasibilities
self.x_res = sp.linalg.blas.daxpy(c, self.x_res, a=-tau)
if model.p > 0:
self.y_res = sp.linalg.blas.daxpy(b, self.y_res, a=-tau)
if model.q > 0:
self.z_res = sp.linalg.blas.daxpy(h, self.z_res, a=-tau)
self.tau_res = p_obj_tau - d_obj_tau + kap
self.x_feas = norm_inf(self.x_res) / (1.0 + self.c_max) / tau
self.y_feas = norm_inf(self.y_res) / (1.0 + self.b_max) / tau
self.z_feas = norm_inf(self.z_res) / (1.0 + self.h_max) / tau
self.res = {
"x": self.x_res,
"y": self.y_res,
"z": self.z_res,
"tau": self.tau_res,
}
return
def copy_solver_data(self):
gap_feas = max(self.x_feas, self.y_feas, self.z_feas, self.gap)
if self.iter == 0:
# Best point hasn't been initialized yet
gap_feas_best = np.inf
else:
gap_feas_best = max(self.x_feas_best, self.y_feas_best,
self.z_feas_best, self.gap_best) # fmt: skip
if gap_feas_best > gap_feas:
self.point_best.vec[:] = self.point.vec
self.best_iter = self.iter
self.p_obj_best = self.p_obj
self.d_obj_best = self.d_obj
self.gap_best = self.gap
self.x_feas_best = self.x_feas
self.y_feas_best = self.y_feas
self.z_feas_best = self.z_feas
self.tau_res_best = self.tau_res
self.x_infeas_best = self.x_infeas
self.y_infeas_best = self.y_infeas
self.z_infeas_best = self.z_infeas
def retrieve_best_data(self):
if self.best_iter != self.iter:
if self.verbose:
print("\nRetrieving data from iteration ", self.best_iter)
self.point.vec = self.point_best.vec[:]
self.p_obj = self.p_obj_best
self.d_obj = self.d_obj_best
self.gap = self.gap_best
self.x_feas = self.x_feas_best
self.y_feas = self.y_feas_best
self.z_feas = self.z_feas_best
self.tau_res = self.tau_res_best
self.x_infeas = self.x_infeas_best
self.y_infeas = self.y_infeas_best
self.z_infeas = self.z_infeas_best
def print_title(self):
filler = "="
print(f"{'':{filler}^{68}}")
print(f"{'QICS v' + __version__ + ' - Quantum Information Conic Solver':^68}")
print(f"{'by K. He, J. Saunderson, H. Fawzi (2024)':^68}")
print(f"{'':{filler}^{68}}")
print("Problem summary:")
print(f"\tno. vars: {self.model.n:<10}", end="")
print(f"\t\tbarr. par: {self.model.nu:<10}")
print(f"\tno. constr: {self.model.p:<10}", end="")
print(f"\t\tsymmetric: {self.model.issymmetric!r:<10}")
print(f"\tcone dim: {self.model.q:<10}", end="")
print(f"\t\tcomplex: {self.model.iscomplex!r:<10}")
print(f"\tno. cones: {len(self.model.cones):<10}", end="")
print(f"\t\tsparse: {self.model.issparse!r:<10}")
def print_iter_heading(self):
filler = "="
print(f"\n{'':{filler}^{self.printbar_size}}", end="")
print(f"\n {'iter':^4} {'mu':^7} {'k/t':^7} ", end="")
print(f"| {'p_obj':^10} {'d_obj':^10} {'gap':^7} ", end="")
print(f"| {'p_feas':^7} {'d_feas':^7} ", end="")
print(f"| {'time (s)':^8} ", end="")
if self.verbose == 3:
if self.model.issymmetric:
print(f"| {'dir_tol':^7} {'sigma':^5} {'alpha':^5}", end="")
else:
print(f"| {'step':^6} {'dir_tol':^7} ", end="")
print(f"{'prox':^7} {'alpha':^5}", end="")
print(f"\n{'':{filler}^{self.printbar_size}}", end="")
def print_iter(self):
yz_feas = max(self.y_feas, self.z_feas)
print(f"\n {self.iter:>4} {self.mu:>7.1e} {self.kap_tau:>7.1e} ", end="")
print(f"| {self.p_obj:>10.3e} {self.d_obj:>10.3e} {self.gap:>8.1e} ", end="")
print(f"| {yz_feas:>7.1e} {self.x_feas:>7.1e} ", end="")
print(f"| {self.elapsed_time:<8.2f}", end="")
def print_solution(self):
print("\n\nSolution summary")
print(f"\tsol. status: {self.solution_status:<19}", end="")
print(f"\tnum. iter: {self.iter:<10}")
print(f"\texit status: {self.exit_status:<19}", end="")
print(f"\tsolve time: {self.solve_time:<10.3f}")
print(f"\tprimal obj: {self.p_obj:>19.12e}", end="")
print(f"\tprimal feas: {max(self.y_feas, self.z_feas):<.2e}")
print(f"\tdual obj: {self.d_obj:>19.12e}", end="")
print(f"\tdual feas: {self.x_feas:<.2e}")
print()