# Copyright (c) 2024, Kerry He, James Saunderson, and Hamza Fawzi
# This Python package QICS is licensed under the MIT license; see LICENSE.md
# file in the root directory or at https://github.com/kerry-he/qics
import math
import numpy as np
[docs]
def vec_dim(side, iscomplex=False, compact=False):
"""Computes the dimension of a vectorized matrix.
Parameters
----------
side : :obj:`int`
The dimension of the matrix.
iscomplex : :obj:`bool`, optional
Whether the matrix is Hermitian (``True``) or symmetric
(``False``). The default is ``False``.
compact : :obj:`bool`, optional
Whether to assume a compact vector representation or not. The
default is ``False``.
Returns
-------
:obj:`int`
The dimension of the vector.
"""
if compact:
if iscomplex:
return side * side
else:
return side * (side + 1) // 2
else:
if iscomplex:
return 2 * side * side
else:
return side * side
[docs]
def mat_dim(len, iscomplex=False, compact=False):
"""Computes the dimension of the matrix correpsonding to a vector.
Parameters
----------
len : :obj:`int`
The dimension of the vector.
iscomplex : :obj:`bool`, optional
Whether the matrix is Hermitian (``True``) or symmetric
(``False``). The default is ``False``.
compact : :obj:`bool`, optional
Whether to assume a compact vector representation or not. The
default is ``False``.
Returns
-------
:obj:`int`
The dimension of the matrix.
"""
if compact:
if iscomplex:
return math.isqrt(len)
else:
return math.isqrt(1 + 8 * len) // 2
else:
if iscomplex:
return math.isqrt(len // 2)
else:
return math.isqrt(len)
[docs]
def mat_to_vec(mat, compact=False):
r"""Reshapes a symmetric or Hermitian matrix into a column vector.
If ``mat`` is of type :obj:`~numpy.float64` and ``compact=False``, then
this performs the vectorization
.. math::
\begin{bmatrix}a & b & d \\ b & c & e \\ d & e & f\end{bmatrix}
\mapsto
\begin{bmatrix}a & b & d & b & c & e & d & e & f\end{bmatrix}^\top.
If ``mat`` is of type :obj:`~numpy.float64` and ``compact=True``, then
this performs the vectorization
.. math::
\begin{bmatrix}a & b & d \\ b & c & e \\ d & e & f\end{bmatrix}
\mapsto\begin{bmatrix}
a & \sqrt{2} b & c & \sqrt{2} d & \sqrt{2}e & f
\end{bmatrix}^{\top}.
If ``mat`` is of type :obj:`~numpy.complex128` and ``compact=False``,
then this performs the vectorization
.. math::
\begin{bmatrix}
a & b+ci & e+fi \\ b-ci & d & g+hi \\ e-fi & g-hi & k
\end{bmatrix}\mapsto
\begin{bmatrix}
a & 0 & b & c & e & f & b & -c & d & 0
& g & h & e & -f & g & -h & k & 0
\end{bmatrix}^{\top}.
If ``mat`` is of type :obj:`~numpy.complex128` and ``compact=True``,
then this performs the vectorization
.. math::
\begin{bmatrix}
a & b+ci & e+fi \\ b-ci & d & g+hi \\ e-fi & g-hi & k
\end{bmatrix}\mapsto
\begin{bmatrix}
a & \sqrt{2} b & \sqrt{2} c & d & \sqrt{2} e & \sqrt{2} f &
\sqrt{2} g & \sqrt{2} h & k
\end{bmatrix}^{\top}.
Parameters
----------
mat : :class:`~numpy.ndarray`
Input matrix to vectorize, either of type :obj:`~numpy.float64`
or :obj:`~numpy.complex128`.
compact : :obj:`bool`, optional
Whether to convert to a compact vector representation or not.
The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
The resulting vectorized matrix.
"""
if np.isscalar(mat):
mat = np.array([[mat]])
iscomplex = np.iscomplexobj(mat)
if iscomplex:
mat = mat.astype(np.complex128, copy=False)
else:
mat = mat.astype(np.float64, copy=False)
n = mat.shape[0]
vn = vec_dim(n, iscomplex=iscomplex, compact=compact)
if compact:
rt2 = np.sqrt(2.0)
vec = np.empty((vn, 1))
k = 0
for j in range(n):
for i in range(j):
vec[k] = mat[i, j].real * rt2
k += 1
if iscomplex:
vec[k] = mat[i, j].imag * rt2
k += 1
vec[k] = mat[j, j].real
k += 1
return vec
else:
mat = np.ascontiguousarray(mat)
return mat.view(np.float64).reshape(-1, 1).copy()
[docs]
def vec_to_mat(vec, iscomplex=False, compact=False):
r"""Reshapes a column vector into a symmetric or Hermitian matrix.
If ``iscomplex=False`` and ``compact=False``, then this returns the
matrix
.. math::
\begin{bmatrix}a & b & d & b & c & e & d & e & f\end{bmatrix}^\top
\mapsto
\begin{bmatrix}a & b & d \\ b & c & e \\ d & e & f\end{bmatrix}.
If ``iscomplex=False`` and ``compact=True``, then this performs the
matrix
.. math::
\begin{bmatrix}
a & \sqrt{2} b & c & \sqrt{2} d & \sqrt{2}e & f
\end{bmatrix}^{\top}\mapsto
\begin{bmatrix}a & b & d \\ b & c & e \\ d & e & f\end{bmatrix}.
If ``iscomplex=True`` and ``compact=False``, then this returns the
matrix
.. math::
\begin{bmatrix}
a & 0 & b & c & e & f & b & -c & d & 0
& g & h & e & -f & g & -h & k & 0
\end{bmatrix}^{\top}\mapsto
\begin{bmatrix}
a & b+ci & e+fi \\ b-ci & d & g+hi \\ e-fi & g-hi & k
\end{bmatrix}.
If ``iscomplex=True`` and ``compact=True``, then this returns the
matrix
.. math::
\begin{bmatrix}
a & \sqrt{2} b & \sqrt{2} c & d & \sqrt{2} e & \sqrt{2} f &
\sqrt{2} g & \sqrt{2} h & k
\end{bmatrix}^{\top}\mapsto
\begin{bmatrix}
a & b+ci & e+fi \\ b-ci & d & g+hi \\ e-fi & g-hi & k
\end{bmatrix}.
Parameters
----------
mat : :class:`~numpy.ndarray`
Input vector to reshape into a matrix.
iscomplex : :obj:`bool`, optional
Whether the resulting matrix is Hermitian (``True``) or symmetric
(``False``). The default is ``False``.
compact : :obj:`bool`, optional
Whether to convert from a compact vector representation or not.
The default is ``False``.
Returns
-------
:class:`~numpy.ndarray`
The resulting vector.
"""
vn = vec.size
n = mat_dim(vn, iscomplex=iscomplex, compact=compact)
dtype = np.complex128 if iscomplex else np.float64
if compact:
irt2 = np.sqrt(0.5)
mat = np.empty((n, n), dtype=dtype)
k = 0
for j in range(n):
for i in range(j):
if iscomplex:
mat[i, j] = (vec[k, 0] + vec[k + 1, 0] * 1j) * irt2
k += 2
else:
mat[i, j] = vec[k, 0] * irt2
k += 1
mat[j, i] = mat[i, j].conjugate()
mat[j, j] = vec[k, 0]
k += 1
return mat
else:
if iscomplex:
n = math.isqrt(vn // 2)
mat = vec.reshape((-1, 2)).view(np.complex128).reshape(n, n)
return (mat + mat.conj().T) * 0.5
else:
n = math.isqrt(vn)
mat = vec.reshape((n, n))
return (mat + mat.T) * 0.5
[docs]
def lin_to_mat(lin, dims, iscomplex=False, compact=(False, True)):
"""Computes the matrix corresponding to a linear map from vectorized
symmetric matrices to vectorized symmetric matrices.
Parameters
----------
lin : :obj:`callable`
Linear operator sending symmetric matrices to symmetric matrices.
dims : :obj:`tuple` of :obj:`int`
The dimensions ``(ni, no)`` of the input and output matrices of the
linear operator.
iscomplex : :obj:`bool`, optional
Whether the matrix to vectorize is Hermitian (``True``) or
symmetric (``False``). Default is ``False``.
compact : :obj:`tuple` of :obj:`bool`, optional
Whether to use a compact vector representation or not for the input
and output matrices, respectively. Default is ``(False, True)``.
Returns
-------
:class:`~numpy.ndarray`
The matrix representation of the given linear operator.
"""
vni = vec_dim(dims[0], iscomplex=iscomplex, compact=compact[0])
vno = vec_dim(dims[1], iscomplex=iscomplex, compact=compact[1])
mat = np.zeros((vno, vni))
for k in range(vni):
H = np.zeros((vni, 1))
H[k] = 1.0
H_mat = vec_to_mat(H, iscomplex=iscomplex, compact=compact[0])
lin_H = lin(H_mat)
vec_out = mat_to_vec(lin_H, compact=compact[1])
mat[:, [k]] = vec_out
return mat
[docs]
def eye(n, iscomplex=False, compact=(False, True)):
"""Computes the matrix representation of the identity map for
vectorized symmetric or Hermitian matrices.
Parameters
----------
n : :obj:`int`
The dimensions of the ``(n, n)`` matrix the identity is acting on.
iscomplex : :obj:`bool`, optional
Whether the matrix to vectorize is Hermitian (``True``) or
symmetric (``False``). Default is ``False``.
compact : :obj:`tuple` of :obj:`bool`, optional
Whether to use a compact vector representation or not for the input
and output matrices, respectively. Default is ``(False, True)``.
Returns
-------
:class:`~numpy.ndarray`
The matrix representation of the identity superoperator.
"""
return lin_to_mat(lambda X: X, (n, n), iscomplex=iscomplex, compact=compact)
def get_full_to_compact_op(n, iscomplex=False):
import scipy
dim_compact = n * n if iscomplex else n * (n + 1) // 2
dim_full = 2 * n * n if iscomplex else n * n
rows = np.zeros(dim_full)
cols = np.zeros(dim_full)
vals = np.zeros(dim_full)
irt2 = np.sqrt(0.5)
row = 0
k = 0
for j in range(n):
for i in range(j):
rows[k : k + 2] = row
cols[k : k + 2] = (
[2 * (i + j * n), 2 * (j + i * n)]
if iscomplex
else [i + j * n, j + i * n]
)
vals[k : k + 2] = irt2
k += 2
row += 1
if iscomplex:
rows[k : k + 2] = row
cols[k : k + 2] = [2 * (i + j * n) + 1, 2 * (j + i * n) + 1]
vals[k : k + 2] = [-irt2, irt2]
k += 2
row += 1
rows[k] = row
cols[k] = 2 * j * (n + 1) if iscomplex else j * (n + 1)
vals[k] = 1.0
k += 1
row += 1
shape = (dim_compact, dim_full)
return scipy.sparse.coo_matrix((vals, (rows, cols)), shape=shape)